Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Charakterystyka struktury zeolitów naturalnych oraz ich zastosowań w katalizie i procesach adsorpcji
Języki publikacji
Abstrakty
Authors present a short review of selected natural-origin zeolite materials. This article discusses the structure, classification and ability to modify natural zeolites, along with examples of their potential applications as adsorbents or catalysts.
Autorzy przedstawili krótki przegląd wybranych materiałów zeolitowych pochodzenia naturalnego. W artykule omówiono strukturę, klasyfikację i możliwości modyfikacji naturalnych zeolitów, wraz z przykładami ich potencjalnych zastosowań jako adsorbentów lub katalizatorów.
Czasopismo
Rocznik
Tom
Strony
art. no. e2020043
Opis fizyczny
Bibliogr. 89 poz., il.
Twórcy
autor
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
- Institute of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology
autor
- Yuriy Fedkovych National University of Chernivtsi, Ukraine
autor
- Yuriy Fedkovych National University of Chernivtsi, Ukraine
Bibliografia
- 1. Ackley, M.W., Yang, R.T. (1991). Diffusion in ion‐exchanged clinoptilolites, AIChE Journal, 11, 1645–1656. https://doi.org/10.1002/aic.690371107
- 2. Armbruster, T. (2001). Clinoptilolite-heulandite: applications and basic research. Studies in Surface Science and Catalysis, 135, 13–27. https://doi.org/10.1016/S0167-2991(01)81183-6
- 3. Armor, J.N. (2011). A history of industrial catalysis, Catalysis Today, 163, 3–9. https://doi.org/10.1016/j.cattod.2009.11.019
- 4. Atta, A.Y., Jibril, B.Y., Aderemi, B.O., Adefila, S.S. (2012). Preparation of analcime from local kaolin and rice husk ash. Applied Clay Science, 61, 8–13. https://doi.org/10.1016/j.clay.2012.02.018
- 5. Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C., Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Microporous and Mesoporous Materials, 235, 78–86. https://doi.org/10.1016/j.micromeso.2016.08.007
- 6. Azizi, S.N., Ehsani, Tilami S. (2013). Framework-incorporated Mn and Co analcime zeolites: Synthesis and characterization. Journal of Solid State Chemistry, 198, 138–142. https://doi.org/10.1016/j.jssc.2012.10.001
- 7. Azizi 1, S.N., Ehsani, Tilami S. (2013). Cu-modified analcime as a catalyst for oxidation of benzyl alcohol: Experimental and theoretical. Microporous
- 8. and Mesoporous Materials, 167, 89–93. https://doi.org/10.1016/j.micromeso.2012.03.034
- 9. Bampaiti, A., Misaelides, P., Noli, F. (2015). Uranium removal from aqueous solutions using a raw and HDTMA-modified phillipsite-bearing tuff, J. Radioanal. Nucl. Chem., 303, 2233. https://doi.org/10.1007/s10967-014-3796-4
- 10. Bejar A., Chaabene S.B., Jaber M., Lambert J.F., Bergaoui F. (2014). Mnanalcime: synthesis, characterization and application to cyclohexene oxidation. Microporous and Mesoporous Materials, 196, 158–164. https://doi.org/10.1016/j.micromeso.2014.05.004
- 11. Čejka, J., Peréz-Pariente, J., Roth, W.J. (2008). Zeolites: From Model Materials to Industrial Catalysts. Transworld Research Network, 357–389.
- 12. Chmielewská-Horváthová, E., Konečný, J., Bošan, Z. (1992). Ammonia Removal from Tannery Wastewaters by Selective Ion Exchange on Slovak Clinoptilolite. Acta hydrochim. hydrobiol., 20, 269–272. https://doi.org/10.1016/S0043-1354(02)00571-7
- 13. Christidis, G.E., Moraetis, D., Keheyanb, E., Akhalbedashvili, L., Kekelidzec N., Gevorkyand R., Yeritsyane H., Sargsyan H. (2003). Chemical and thermal modification of natural HEU-type zeolitic materials from Armenia, Georgia and Greece. Applied Clay Science, 24, 79–91. https://doi.org/10.1016/S0169-1317(03)00150-9
- 14. Coombs, D.S., Ellis, A.J., Fyfe, W.S., Taylor, A.M. (1959). The zeoIite facies, with comments on the interpretation of hydrothermal syntheses. Geochimica et Cosmochimica Acta, 17, 53–107. https://doi.org/10.1016/0016-7037(59)90079-1
- 15. Corma A. (2003). State of the art and future challenges of zeolites as catalysts. Journal of Catalysis, 216, 298–312. https://doi.org/10.1016/S0021-9517(02)00132-X
- 16. Covarrubias, C., García, R., Arriagada, R., Yánez, J., Garland, M.T. (2006). Cr(III) exchange on zeolites obtained from kaolin and natural mordenite. Microporous and Mesoporous Materials, 88, 220–231. https://doi.org/10.1016/j.micromeso.2005.09.007
- 17. Cundy, C.S., Cox, P.A. (2003). The Hydrothermal Synthesis of Zeolites: History and Development from the Earliest Days to the Present Time. Chem. Rev. ,103, 663–701. https://doi.org/10.1021/cr020060i
- 18. Czekaj, I., Sobuś, N. (2018a). Concepts of modern Technologies of obtaining valuable biomass-derived chemicals. Technical Transactions, 8, 35–58. https://doi.org/10.4467/2353737XCT.18.114.8889
- 19. Czekaj, I., Sobuś, N. (2018b). Vibrational Structure of Selected Compounds Derived from Biomass: Lignin Dimers, Selected Aldopentoses and Aldohexoses. Journal of Chemistry and Chemical Engineering, 12, 11–19. https://doi.org/10.17265/1934-7375/2018.01.002
- 20. Czekaj, I., Sobuś, N. (2018c). Nano-design of zeolite-based catalysts for selective conversion of biomass into chemicals, Wydawnictwo PK, Kraków 2018. https://repozytorium.biblos.pk.edu.pl/resources/42981
- 21. Ćurković, L., Cerjan-Stefanović, Š., Filipan, T. (1997). Metal ion exchange by natural and modified zeolites. Water Research, 31, 1379–1382. https://doi.org/10.1016/S0043-1354(96)00411-3
- 22. Dallas Swift, T., Nguyen, H., Erdman, Z., Kruger, J.S., Nikolakis, V., Vlachos, D.G. (2016). Tandem Lewis acid/Brønsted acid-catalyzed conversion of carbohydrates to 5-hydroxymethylfurfural using zeolite beta. Journal of Catalysis, 333, 149–161. https://doi.org/10.1016/j.jcat.2015.10.009
- 23. Dapsens, P.Y., Mondelli, C., Perez-Ramirez, J. (2015). Design of Lewis-acid centres in zeolitic matrices for the conversion of renewable. Chem. Soc. Rev., 44, 7025–7043. https://doi.org/10.1039/C5CS00028A
- 24. Davis, R.J. (2003). New perspectives on basic zeolites as catalysts and catalyst supports. Journal of Catalysis, 216, 396–405. https://doi.org/10.1016/S0021-9517(02)00034-9
- 25. Dwyer, F.G., Degnan, T.F. (1993). Shape Selectivity in Catalytic Cracking. Studies in Surface Science and Catalysis, 76, 499–530. https://doi.org/10.1016/S0167-2991(08)63836-7
- 26. Ennaert, T., Van Aelst, J., Dijkmans, J., De Clercq, R., Schutyser, W., Dusselier, M., Verboekend, D., Sels B.F. (2016). Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem. Soc. Rev., 45, 584-611. https://doi.org/10.1039/C5CS00859J
- 27. Eprikashvili, L., Zautashvili, M., Kordzakhia, T., Pirtskhalava, N., Dzagania, M., Rubashvili, I., Tsitsishvili, V. (2016). Intensification of bioproductivity of agricultural cultures by adding natural zeolites and brown coals into soils. Annals of Agrarian Science, 14, 67–71. https://doi.org/10.1016/j.aasci.2016.05.004
- 28. Favvas, E.P., Tsanaktsidis, C.G., Sapalidis, A.A., Tzilantonis, G.T., Papageorgiou, S.K., Mitropoulos, A.Ch. (2016). Clinoptilolite, a natural zeolite material: Structural characterization and performance evaluation on its dehydration properties of hydrocarbon-based fuels. Microporous and Mesoporous Materials, 225, 385–391. https://doi.org/10.1016/j.micromeso.2016.01.021
- 29. Figueroa-Torres, G.M., Certucha-Barragán, M.T., Acedo-Félix, E., Monge-Amaya, O., Almendariz-Tapia, F.J., Gasca-Estefanía, L.A. (2016). Kinetic studies of heavy metals biosorption by acidogenic biomass immobilized in clinoptilolite. Journal of the Taiwan Institute of Chemical Engineers, 61, 241–246. https://doi.org/10.1016/j.jtice.2015.12.018
- 30. Flanigen E.M. (2001). Zeolites and molecular sieves: An historical perspective. Studies in Surface Science and Catalysis, 137, 11–35. https://doi.org/10.1016/S0167-2991(01)80243-3
- 31. Fukui, K., Arai, K., Kanayama, K., Yoshida, H. (2006). Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Advanced Powder Technol., 17, 369–382. https://doi.org/10.1163/156855206777866164
- 32. García, J.E., González, M.M., Notario, J.S. (1993). Phenol adsorption on natural phillipsite. Reactive Polymers, 21, 171–176. https://doi.org/10.1016/0923-1137(93)90119-Z
- 33. García Hernández, J.E., Diaz Diaz, R., Notario del Pint, J.S., González Martin, M.M.(1994). NH4+ - Na+ -exchange and NH4 +-release studies in natural phillipsite. Applied Clay Science 9/1994, 129–137. https://doi.org/10.1016/0169-1317(94)90032-9
- 34. Garcia-Basabe, Y., Rodriguez-Iznaga, I., de Menorval, L.Ch., Llewellyn, P., Maurin, G., Lewis, D.W., Binions, R., Autie, M., Ruiz-Salvador, A.R. (2010). Step-wise dealumination of natural clinoptilolite: Structural and physicochemical characterization. Microporous and Mesoporous Materials ,135, 187–196. https://doi.org/10.1016/j.micromeso.2010.07.008
- 35. Garcia-Martinez, J., Li, K. (2015). Mesoporous Zeolites Preparation. Characterization and Applications, Wiley-VCH.
- 36. Gatta, G.D., Cappelletti, P., Rotiroti, N., Slebodnick, C., Rinaldi, R. (2009). New insights into the crystal structure and crystal chemistry of the zeolite phillipsite. American Mineralogist, 94, 190–199. https://doi.org/10.2138/am.2009.3032
- 37. Gatta, G.D., Lotti, P. (2019). Systematics, crystal structures, and occurrences of zeolites. Modified Clay and Zeolite Nanocomposite Materials. Environmental and Pharmaceutical Applications. Micro and Nano Technologies, 1–25. https://doi.org/10.1016/B978-0-12-814617-0.00001-3
- 38. Ghobarkar, H., Schӓf, O., Massiani, Y., Knauth, P. (2003). The Reconstruction of Natural Zeolites. Springer Science+Business Media Dordrecht 2003.
- 39. Grce, M., Pavelić, K. (2005). Antiviral properties of clinoptilolite. Microporous and Mesoporous Materials, 79, 165–169. https://doi.org/10.1016/j.micromeso.2004.10.039
- 40. Grzybowska-Świerkosz, B. (1993). Elementy katalizy heterogenicznej. Warszawa: Wydawnictwo Naukowe PWN.
- 41. Gualtieri, A.F., Passaglia, E., Galli, E. (2002). Ion exchange selectivity of phillipsite. Studies in Surface Science and Catalysis, 142, 1705–1712. https://doi.org/10.1016/S0167-2991(02)80343-3
- 42. Handke, M. (2005). Krystalochemia krzemianów. Kraków: Wydawnictwo AGH.
- 43. Harikishore, K. R. D., Vijayaraghavan, K., Kim, J.A., Yeoung-Sang, Y. (2017) Valorisation of post-sorption materials: Opportunities, strategies, and challenges, Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.002
- 44. Hedström, A., (2001). Ion Exchange of Ammonium in Zeolites: A Literature Review. Journal of Environmental Engineering, 127, 673–681. https://doi.org/10.1061/(ASCE)0733-9372(2001)127:8(673)
- 45. Hincapie B.O., Garces L.J., Zhang Q., Sacco A., Suib S.L. (2004). Synthesis of mordenite nanocrystals. Microporous and Mesoporous Materials, 67, 19–26. https://doi.org/10.1016/j.micromeso.2003.09.026
- 46. Inglezakis V.J., Hadjiandreou, K.J., Loizidou, M.D., Grigoropoulou, H.P. (2001). Pretreatment of natural clinoptilolite in a laboratory-scale ion exchange packed bed, Wat. Res., 9, 2161–2166. https://doi.org/10.1016/S0043-1354(00)00500-5
- 47. http://iza-structure.org [access: 30.04.2020]
- 48. Jha, V.K., Hayashi, S., (2009). Modification on natural clinoptilolite zeolite for its NH4+ retention capacity. Journal of Hazardous Materials, 169, 29–35. https://doi.org/10.1016/j.jhazmat.2009.03.052
- 49. Karadag, D., Akgul, E., Tok, S., Erturk, F., Kaya, M.A., Turan, M. (2007). Basic and Reactive Dye Removal Using Natural and Modified Zeolites. Journal of Chemical and Engineering Data, 52, 2436–2441. https://doi.org/10.1021/je7003726
- 50. Kesraoui-Ouki, S., Cheeseman, C.R., Perry R. (1994). Natural Zeolite Utilisation in Pollution Control: A Review of Applications to Metals’ Effluents. J. Chem. Tech. Biorechnol., 59, 121–126. https://doi.org/10.1002/jctb.280590202
- 51. Kim, D. (2018). Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review. Molecules, 23, 309, 1-21. https://doi.org/10.3390/molecules23020309
- 52. Kol’tsova T.N. (2007). Crystal Structures of Zeolites with the General Formula CaAl2Si4O12 · nH2O. Inorganic Materials, 2, 176–184. https://doi.org/10.1134/S0020168507060180
- 53. Korkuna, O., Leboda, R., Skubiszewska-Zięba, J., Vrublevs’ka, T., Gun’ko, V.M., Ryczkowski, J. (2006). Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite. Microporous and Mesoporous Materials, 87, 243–254. https://doi.org/10.1016/j.micromeso.2005.08.002
- 54. Kulprathipanja, S. (2010). Zeolites in Industrial Separation and Catalysis, WILEYVCH Verlag GmbH & Co.KGaA, 2010.
- 55. Lia Q., Liu D., Song L., Houd X., Wua C., Yan Z. (2018). Efficient hydro-liquefaction of woody biomass over ionic liquid nickel based catalyst. Industrial Crops & Products, 113, 157–166. https://doi.org/10.1016/j.indcrop.2018.01.033
- 56. Liebau, F. (1983). Zeolites and clathrasils - two distinct classes of framework silicates, Zeolites, 3, 191-193. https://doi.org/10.1016/0144-2449(83)90003-9
- 57. Mahdi, H.I., Irawan, E., Nuryoto, N., Jayanudin, J., Sulistyo, H., Sediawan, W.B., Muraza, O. (2016). Glycerol carbonate production from biodiesel waste over modified natural clinoptilolite. Waste Biomass Valor, 7, 1349–1356. https://doi.org/10.1007/s12649-016-9495-3
- 58. Majdan, M., Pikus, S., Rzączyńska, Z., Iwan, M., Maryuk, O., Kwiatkowski, R., Skrzypek, H. (2006). Characteristics of chabazite modified by hexadecyltrimethylammonium bromide and of its affinity toward chromates. Journal of Molecular Structure, 791, 53–60. https://doi.org/10.1016/j.molstruc.2005.12.043
- 59. Malekian, R., Abedi-Koupai, J., Eslamian, S.S. (2011). Influences of clinoptilolite and surfactant-modified clinoptilolite zeolite on nitrate leaching and plant growth. Journal of Hazardous Materials 185, 970–976. https://doi.org/10.1016/j.jhazmat.2010.09.114
- 60. Marakatti, V.S., Halgeri, A.B. (2015). Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol, RSC Adv., 5, 14286–14293. https://doi.org/10.1039/C4RA16052E
- 61. Masters, A.F., Maschmeyer, T. (2011). Zeolites–From curiosity to cornerstone. Microporous and Mesoporous Materials, 142, 423–438. https://doi.org/10.1016/j.micromeso.2010.12.026
- 62. Mess, F., Stoops, G., Van Ranst, E., Paepe, R., Van Overloop, E. (2005). The nature of zeolite occurrences in deposits of the Olduvai Basin, Northern Tanzania. Clays and Clay Minerals, 6, 659–673. http://hdl.handle.net/1854/LU-412857
- 63. Mintova, S., Barrier, N., (2016). Syntheses of Zeolitic Materials Third Revised Edition, Published on behalf of the Synthesis Commission of the International Zeolite Association 2016.
- 64. Montagna, G., Bigi, S., Kónya, P., Szakáll, S., Vezzalini, G. (2010). Chabazite-Mg: a new natural zeolite of the chabazite series. American Mineralogist, 95, 939–945. https://doi.org/10.2138/am.2010.3449
- 65. Mumpton, F.A. (1977). Mineralogy and Geology of Natural Zeolites, Reviews in Mineralogy & Geochemistry, 4, New York.
- 66. Park, M., Choi, J. (1995). Synthesis of phillipsite from fly ash. Clay Science, 9, 219–229. https://doi.org/10.1163/156855206777866164
- 67. Pavlovic, J., Popova, M., Mihalyi, R.M., Mazaj, M., Mali, G., J. Kovač, J., H. Lazarova, H., Rajic, N. (2019). Catalytic activity of SnO2- and SO4/SnO2-containing clinoptilolite in the esterification of levulinic acid. Microporous and Mesoporous Materials, 279, 10–18. https://doi.org/10.1016/j.micromeso.2018.12.009
- 68. Primo, A., Garcia, H. (2014). Zeolites as catalysts in oil refining. Chem. Soc. Rev., 43, 7548–7561. https://doi.org/10.1039/C3CS60394F
- 69. Ragnarsdóttir K.V. (1993). Dissolution kinetics of heulandite at pH 2-12 and 25°C. Geochimica et Cosmochimica Acta, 57, 2439–2449. https://doi.org/10.1016/0016-7037(93)90408-O
- 70. Ramachandran, C.E., Williams, B.A., van Bokhoven, J.A., Miller, J.T. (2005). Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis, 233, 100–108. https://doi.org/10.1016/j.jcat.2005.04.017
- 71. Reháková, M., Čuvanová, S., Dzivák, M., Rimár, J., Gaval’ová, Z. (2004). Agricultural and agrochemical uses of natural zeolite of the clinoptilolite type. Current Opinion in Solid State and Materials Science, 8, 397–404. https://doi.org/10.1016/j.cossms.2005.04.004
- 72. Rinaldi, R., Schüth, F. (2009). Design of solid catalysts for the conversion of biomass. Energy Environ. Sci., 2, 610–626. https://doi.org/10.1039/B902668A
- 73. Rujiwatra, A. (2004). A selective preparation of phillipsite and sodalite from perlite. Materials Letters, 58, 2012–2015. https://doi.org/10.1016/j.matlet.2003.12.015
- 74. Sanhueza, V., Kelm, U., Cid, R. (2002). Synthesis of mordenite from diatomite: a case of zeolite synthesis from natural material. J. Chem. Technol Biotechnol., 78, 485 -488. https://doi.org/10.1002/jctb.801
- 75. Sani, A., Cruciani, G., Gualtieri, A.F. (2002). Dehydration dynamics of Baphillipsite: an in situ synchrotron powder diffraction study. Phys Chem Minerals, 29, 351–361. https://doi.org/10.1007/s00269-002-0247-5
- 76. Sarioglu M. (2005). Removal of ammonium from municipal wastewater using natural Turkish (Dogantepe) zeolite. Separation and Purification Technology, 41, 1–11. https://doi.org/10.1016/j.seppur.2004.03.008
- 77. Serri, C., de Gennaro, B., Catalanotti, L., Cappelletti, P., Langella, A., Mercurio, M., Mayol, L., Biondi, M. (2016). Surfactant-modified phillipsite and chabazite as novel excipients for pharmaceutical applications?, Microporous and Mesoporous Materials, 224, 143–148. https://doi.org/10.1016/j.micromeso.2015.11.023
- 78. Smit, B., Maesen, T.L.M. (2008). Towards a molecular understanding of shape selectivity. Nature, 451, 671–678. https://doi.org/10.1038/nature06552
- 79. Stephenson, D.J., Fairchild, C.I., Buchan, R.M., Dakins, M.E. (1999). A Fiber Characterization of the Natural Zeolite, Mordenite: A Potential Inhalation Health Hazard, Aerosol Science and Technology, 30, 467–476. https://doi.org/10.1080/027868299304507
- 80. Sun, Z., Barta, K. (2018). Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chem. Commun., 54, 7725–7745. https://doi.org/10.1039/C8CC02937G
- 81. Van Meerbeeka, K., Muysa, B., Hermy, M. (2019). Lignocellulosic biomass for bioenergy beyond intensive cropland and forests. Renewable and Sustainable Energy Reviews, 102, 139–149. https://doi.org/10.1016/j.rser.2018.12.009
- 82. Wanga, S., Peng, Y. (2010). Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 11–24. https://doi.org/10.1016/j.cej.2009.10.029
- 83. Watson, G.C., Jensen, N.K., Rufford, T.E., Chan, I., May, E.F. (2012). Volumetric Adsorption Measurements of N2, CO2, CH4, and a CO2 + CH4 Mixture on a Natural Chabazite from (5 to 3000) kPa. J. Chem. Eng. Data, 57, 93–101. https://doi.org/10.1021/je200812y
- 84. Weitkamp, J., Puppe, L. (1999). Catalysis and Zeolites: Fundamentals and Applications. Berlin Heidelberg: Springer-Verlag. Xiea, Y., Sua, Y., Wanga, P., Zhang, S., Xiong, Y. (2018). In-situ catalytic conversion of tar from biomass gasification over carbon nanofibers- supported Fe-Ni bimetallic catalysts. Fuel Processing Technology, 182, 77–87. https://doi.org/10.1016/j.fuproc.2018.10.019
- 85. Xu, R., Pang, W., Yu, J., Huo, Q., Chen, J. (2007). Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure. Singapore: John Wiley & Sons.
- 86. Yakubovich, O.V., Massa, W., Gavrilenko, P.G., Pekov, I.V. (2005). Crystal Structure of Chabazite K. Crystallography Reports, 4, 544–553. https://doi.org/10.1134/1.1996728
- 87. Yilmaz, B., Műller, U. (2009). Catalytic Applications of Zeolites in Chemical Industry. Topics Catal., 52, 888–895. https://doi.org/10.1007/s11244-009-9226-0
- 88. Yokomori, Y., Idaka, S. (1998). The crystal structure of analcime. Microporous and Mesoporous Materials, 21, 1998, 365–370. https://doi.org/10.1016/S1387-1811(98)00019-5
- 89. Zhou, L., Boyd, C. E. (2014). Total ammonia nitrogen removal from aqueous solutions by the natural zeolite, mordenite: A laboratory test and experimental study. Aquaculture, 432, 252–257. https://doi.org/10.1016/j.aquaculture.2014.05.019
Uwagi
Section "Chemistry"
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42a6dbb4-54bf-47e9-8e20-0dff564d749e