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Abstract 
 
This study addresses the effect of the cooling rate and of titanium additions on the thermophysical parameters of thin-walled compacted 
graphite iron (TWCGI) castings. Various molding materials were used (silica sand and insulating sand LDASC- Low-Density Alumina-
Silicate Ceramic) to achieve different cooling rates. Different titanium additions were caused by various amount of Ferro Titanium. The 
research work was conducted for thin-walled iron castings with a 3-mm wall thickness. The tested material represents the occurrence of 
graphite in the shape of flakes (C and D types, according to the ISO Standard), nodules or compacted graphite with a percent of nodularity 
and different shape factor. Thermal conductivity has been determined by the laser flash technique in a temperature range of 22-600°C. The 
results show that the cooling rates together with the titanium content largely influence the graphite morphology and finally thermal 
conductivity of thin walled iron castings.  
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1. Introduction 
 
Good thermophysical properties of CGI are of high 

importance, especially in thin wall castings which are 
simultaneously, thermally and mechanically loaded, such as 
cylinder blocks, heads and brake systems [1-4]. 

Thermophysical properties of thin walled compacted graphite 
iron castings are strongly influenced by a graphite fraction, its 
morphology, eutectic grains, and metallic matrix [5-8]. A ferrite 
metallic matrix has a higher thermal conductivity then a pearlitic 
one. The thermal conductivity of graphite is strongly anisotropic 

and along hexagonal planes, the conductivity is very high. At 
room temperature, thermal conductivity of graphite can be as high 
as 500 W/(m·K) [5]. In the case of white cast iron, the carbon 
present in the form of cementite reduces thermal conductivity 
(about 8 W/(m·K)).  

Compacted graphite cast iron may have a complex 
microstructure, especially in a thin sections. This is due to the fact 
that the process of obtaining thin-walled castings is not simple, 
because it is associated with a wide range of cooling rates at the 
beginning of graphite eutectic solidification [9, 10]. With 
increasing cooling rates in thin-walled CGI castings, thermal 
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with compacted graphite in accordance with the ISO 16112 
Standard [16] compared to the value of thermal conductivity of 
cast iron obtained for all alloys. It can be concluded, that the 
obtained values of thermal conductivity in thin-walled castings 
with compacted graphite (alloy no. IV) are within the ISO 
Standard limits prescribed for CGI.  

 
 

4. Conclusions 
 
1. The existence of spheroidal graphite within the 

microstructure negatively affects the thermal conductivity of 
compacted graphite cast iron in thin sections. It is manifested in 
the reduction of thermal conductivity as well as an increased 
sensitivity to change in variable thermally loaded conditions. 

 
2. The thin walled cast iron with compacted graphite have 

high thermal conductivity at an elevated temperature for example 
from 200°C, which achieve the level of those obtained for cast 
iron with flake graphite type C or D.  

 
3. Thin walled cast iron with compacted graphite similar to 

cast iron with type D flake graphite shows little change in the 
value of thermal conductivity in the investigated temperature 
range of (22-600°C) in comparison, especially to ductile iron. 

 
4. Thin walled cast iron with compacted graphite have good 

mechanical properties [10] and simultaneously high 
thermophysical properties, which predispose them to work in 
variable thermally loaded conditions by minimizing the 
accumulation of thermally induced stress. 
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