PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General description of cold sprayed coatings formation and of their properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper intends to describe the formation of cold sprayed coatings and their properties based on latest works. Thermodynamic aspects of the cold spray process are discussed, including the main factors influencing powder particles velocity, e.g. nozzle construction, gas type, powder morphology as well as its significance for coating quality. The phenomenon of coating building is illustrated using both numerical simulation and microstructure analysis. Particular emphasis is placed on the description of critical and erosion velocities. Microstructure and coating properties have also been discussed, i.e. porosity, electrical conductivity and residual stresses based on own research. These are further supplemented by a literature review. Finally, clear division between the low and high pressure cold spray method is made.
Rocznik
Strony
301--310
Opis fizyczny
Bibliogr. 62 poz., rys., wykr., tab.
Twórcy
autor
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5/7 Łukasiewicza St., 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5/7 Łukasiewicza St., 50-370 Wrocław, Poland
  • Wrocław University of Science and Technology, Faculty of Mechanical Engineering, 5/7 Łukasiewicza St., 50-370 Wrocław, Poland
Bibliografia
  • [1] A. Papyrin, V. Kosarev, S. Klinkov, A. Alkimov, and V. Fomin, Cold Spray Technology, Elsevier, 2007.
  • [2] M. Grujicic, C. Zhao, C. Tong, W. DeRosset, and D. Helfritch, “Analysis of the impact velocity of powder particles in the cold-gas dynamic-spray process”, Mat. Sci. Eng. A 368, 222‒230 (2004).
  • [3] R. Dykhuizen and M. Smith, “Gas dynamic principles of cold spray”, J. Therm. Spray Technol. 7, 205‒212, (1998).
  • [4] R. Maev and V. Leshchynsky, “Air gas dynamic spraying of powder mixtures: Theory and application”, J. Therm. Spray Technol. 15, 198‒205 (2006).
  • [5] T. Stoltenhoff, H. Kreye, and H. Richter, “An analysis of the cold spray process and its coatings”, J. Therm. Spray Technol. 11, 542‒550 (2001).
  • [6] T. Van Steenkiste, J. Smith, and R. Teets, “Aluminum coatings via kinetic spray with relatively large powder particles”, Surf. Coat. Technol. 154, 237‒252 (2002).
  • [7] T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, “Development of a generalized parameter window for cold spray deposition”, Acta Mater. 54, 729‒742 (2006).
  • [8] T. Han, Z. Zhao, B. Gillispie, and J. Smith, “A fundamental study of the kinetic spray process”, Thermal Spray 2004: Advances in Technology and Application, Osaka, ASM International (2004).
  • [9] S. Shin, S. Yoon, Y. Kim, and C. Lee, “Effect of particle parameters on the deposition characteristics of a hard/soft-particles composite in kinetic spraying”, Surf. Coat. Technol. 201, 3457‒3461 (2006).
  • [10] P. Sudharshan Phani, D. Srinivasa Rao, S. Joshl, and G. Sundararajan, “Effect of process parameters and heat treatments on properties of cold sprayed copper coatings”, J. Therm. Spray Technol. 16, 425‒434 (2007).
  • [11] V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Ltd., Cambridge, 2007.
  • [12] R. Maev and V. Leshchynsky, Introduction to Low Pressure Gas Dynamic Spray, Physics & Technology, Wiley-VCH Verlag GmbH&Co, KGaA, Weinheim, 2008.
  • [13] T. Schmidt, H. Assadi, F. Gärtner, H. Richter, T. Stoltenhoff, H. Kreye, and T. Klassen, “From particle acceleration to impact and bonding in cold spraying”, J. Therm. Spray Technol. 18, 794‒808 (2009).
  • [14] T. van Steenkiste and J.R. Smith, “Evaluation of coatings produced via kinetic and cold spray processes”, J. Therm. Spray Technol. 13, 274‒282. (2004).
  • [15] M. Faizan-Ur-Rab, S.H. Zahiri, S.H. Masood, T.D. Phan, M. Jahedi, and R. Nagarajah, “Application of a holistic 3D model to estimate state of cold spray titanium particles”, Materials and Design 89 1227–1241 (2016).
  • [16] V. Kosarev, S. Klinkov, A. Alkhimov, and A. Papyrin, “On some aspects of gas dynamics of the cold spray process”, J. Therm. Spray Technol. 12, 265‒281 (2003).
  • [17] B. Jodoin, “Effects of Shock Waves on Impact Velocity of Cold Spray Particles”, in: Thermal Spray 2001: New Surfaces for a New Millennium, C. Berndt, K. Khor, E. Lugscheider (Eds.), May 28‒30 (Singapore), ASM International, pp. 399‒407.
  • [18] J. Pattison, S. Celotto, and A. Khan, W. O’Neill, “Standoff distance and bow shock phenomena in the cold spray process”, Surf. Coat. Technol. 202, 1443‒1454 (2008).
  • [19] M. Meyers, “Plasticity: Adiabatic shear localization”, Encyclop. Mat.: Sci. Technol. 7093‒7103.
  • [20] C.-J. Li and W.-Y. Li, “Examination of the critical velocity for deposition of particles in cold spraying”, Thermal Spray 2005: Explore its surfacing potential, ASM International, pp. 217‒224 (2005).
  • [21] D. Helfritch and V. Champagne, “Optimal particle size for the cold spray process”, Thermal Spray 2006: Building on 100 Years of Success, ASM International, (2006).
  • [22] H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, “Bonding mechanism in cold gas spraying”, Acta Mater. 51, 4379‒4394 (2003).
  • [23] P. Richter and H. Höll, “Latest technology for commercially available cold spray systems”, Thermal Spray 2006: Building on 100 Years of Success, ASM International, (2006).
  • [24] C. Borchers, F. Gärtner, T. Stoltenhoff, H. Assadi, and H. Kreye, “Microstructural and macroscopic properties of cold sprayed copper coatings”, J. Appl. Phys. 93, 10064‒10070, (2003).
  • [25] S. Zumdahl, Chemical Principles, Houghton Mifflin Company, Boston, New York, 1998.
  • [26] X.-J. Ning, J.-H. Jang, and H.-J. Kim, “The effects of powder properties on in-flight particle velocity and deposition process during low pressure cold spray process”, Appl. Surf. Sci. 253, 7449‒7455 (2007).
  • [27] H. Katanoda, M. Fukuhara, and N. Iino, “Numerical study of combination parameters for particle impact velocity and temperature in cold spray”, J. Therm. Spray Technol. 16, 627‒633 (2007).
  • [28] A. Alkhimov, S. Klinkov, and V. Kosarev, “Experimental study of deformation and attachment of microparticles to an obstacle upon high-rate impact”, J. Appl. Mech. Tech. Phy. 41, 245‒250 (2000).
  • [29] K. Kang, S. Yoon, Y. Ji, and C. Lee, “Oxidation effects on the critical velocity of pure Al feedstock deposition in the kinetic spraying process”, Thermal Spray 2007: Global Coating Solutions, ASM International, (2007).
  • [30] A. Papyrin, S. Klinkov, and V. Kosarev, “Effect of the substrate surface activation on the process of cold spray coating formation”, Thermal Spray 2005: Explore its surfacing potential, Basel, ASM International, 145‒150 (2005).
  • [31] T. Van Steenkiste and D. Gorkiewicz, “Analysis of tantalum coatings produced by the kinetic spray process”, J. Therm. Spray Technol. 13, 265‒273 (2004).
  • [32] T. Price, P. Shipway, D. McCartney, E. Calla, and D. Zhang, “A method for characterizing the degree of inter-particle bond formation in cold sprayed coatings”, J. Therm. Spray Technol. 16, 566‒570 (2007).
  • [33] T. Schmidt, Kaltgasspritzen, Eine Analyse des Materialverhaltens beim Partikelaufprall und die daraus abgeleitete Prozessoptimierung, Werkstofftechnik, Shaker Verlag, Hamburg, Germany, 2007.
  • [34] T.H. Courtney, Mechanical Behavior of Materials, McGrae-Hill Publishing Company, Singapore, 2000.
  • [35] M. Grujicic, J.R. Saylora, D.E. Beasleya, W.S. DeRossetb, and D. Helfritch, “Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process”, Appl. Surf. Sci., 219, 211–227 (2003).
  • [36] S. Yin, X.-F. Wang, W.-Y. Li, and X.-P. Guo, “Examination on substrate preheating process in cold gas dynamic spraying”, J. Therm. Spray Technol, 20, 852‒859 (2011).
  • [37] S. Klinkov, V. Kosarev, and M. Rein, “Cold spray deposition: Significance of particle impact phenomena”, Aerosp. Sci. Technol. 9, 582‒591 (2005).
  • [38] T. Hussain, D. McCartney, P. Shipway, and D. Zhang, “Bonding mechanisms in cold spraying: The contributions of metallurgical and mechanical components”, J. Therm. Spray Technol. 18, 364‒379 (2009).
  • [39] T. Kairet, “A contribution to the study of cold gas dynamic spraying of copper: Influence of the powder characteristics on the mechanical properties of the coating”, PhD Thesis, Université Libre de Bruxelles, Belgium, 2007.
  • [40] S. Guetta, M. Berger, F. Borit, V. Guipont, M. Jeandin, M. Boustie, Y. Ichikawa, K. Sakaguchi, and K. Ogawa, “Influence of particle velocity on adhesion of cold-sprayed splats”, J. Therm. Spray Technol. 18, 331‒342 (2009).
  • [41] W.-Y. Li, C. Zhang, X. Guo, C.-J. Li, H. Liao, and C. Coddet, “Study on impact fusion at particle interfaces and its effect on coating microstructure in cold spraying”, Appl. Surf. Sci., 254, 517‒526 (2007).
  • [42] A. Rezaeain, R. Chromik, S. Yue, E. Irissou, and J.-G. Legoux, “Characterization of cold-sprayed Ni, Ti and Cu coating properties for their optimizations”, Thermal Spray 2008: Thermal Spray Crossing Borders, E. Lugscheider (Ed.), June 2‒4 (Maastricht, The Netherlands), DVS, 854‒860.
  • [43] T. Kairet, G. Di Stefano, M. Degrez, F. Campana, and J.-P. Janssen, “Comparison Between Coatings from two Different Copper Powders: Mechanical Properties, Hardness and Bond Strength”, Thermal Spray 2006: Building on 100 Years of Success, B. Marple, M. Hyland, Y.-C. Lau, R. Lima, J. Voyer (Eds.), May 15‒18 (Seattle, Washington, USA), ASM International.
  • [44] G. Bae, J. Jang, and Ch. Lee, “Correlation of particle impact conditions with bonding, nanocrystal formation and mechanical properties in kinetic sprayed nickel”, Acta Materialia 60, 3524–3535 (2012).
  • [45] A. Bolesta, V. Fomin, M. Sharafutdinov, and B. Tolochko, “Investigation of interface boundary occurring during cold gas-dynamic spraying of metallic particles”, Nucl. Instrum. Methods Phys. Res., Sect. A 470, 249‒252 (2001).
  • [46] F. Gärtner, T. Stoltenhoff, J. Voyer, H. Kreye, S. Riekehr, and M. Kocak, “Mechanical properties of cold-sprayed and thermally sprayed copper coatings”, Surf. Coat. Technol. 200, 770‒6782 (2006).
  • [47] S. Semiatin, “Recovery, recrystallization, and grain-growth structures”, Metalworking: Bulk Forming 14A, ASM Handbook, ASM International, 552‒562 (2005).
  • [48] P.S. Phani, D.S. Rao, S.V. Joshi, and G. Sundararajan, “Effect of process parameters and heat peer reviewed treatments on properties of cold sprayed copper coatings”, J. Therm. Spray Technol. 16, 425‒434 (2007).
  • [49] T. Stoltenhoff, C. Borchers, F. Gärtner, and H. Kreye, “Microstructures and key properties of cold-sprayed and thermally sprayed copper coatings”, Surf. Coat. Technol. 200, 4947 – 4960 (2006).
  • [50] L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons Ltd., New York, 2008.
  • [51] H. Koivuluoto, A. Coleman, K. Murray, M. Kearns, and P. Vuoristo, “High pressure cold sprayed (HPCS) and low pressure cold sprayed (LPCS) coatings prepared from OFHC Cu feedstock: Overview from powder characteristics to coating properties”, Journal of Thermal Spray Technology 21, 1065‒1075 (2012).
  • [52] M. Decker, R. Neiser, D. Gilmore, and H. Tran, “Microstructure and Properties of Cold Spray Nickel”, Thermal Spray 2001: New Surfaces for a New Millennium, C. Berndt, K. Khor, E. Lugscheider (Eds.), May 28‒30 (Singapore), ASM International, 433‒439 (2001).
  • [53] S. Klinkov, V. Kosarev, A. Sova, and I. Smurov, “Calculation of particle parameters for cold spray spraying of metal-ceramic mixtures”, J. Therm. Spray Technol. 18, 944‒956 (2009).
  • [54] L. Pawłowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons Ltd., New York, 2008.
  • [55] H. Koivuluoto, J. Lagerbom, M. Kylmalahti, and P. Vuoristo, “Microstructure and mechanical properties of low-pressure coldsprayed (LPCS) coatings”, J. Therm. Spray Technol. 17 (5‒6), 721‒727 (2008).
  • [56] H. Mäkinen, J. Lagerbom, and P. Vuoristo, “Adhesion of cold sprayed coatings: Effect of powder, substrate, and heat treatment”, Thermal Spray 2007: Global Coating Solutions: Proceedings of the 2007 International Thermal Spray Technology, Beijing, (2007).
  • [57] X.-J.Ning, J.-H. Kim, H.-J. Kim, and C. Lee, “Characteristics and heat treatment of cold-sprayed Al–Sn binary alloy coatings”, Appl. Surf. Sci. 255, 3933–3939 (2009).
  • [58] H. Koivuluoto and P. Vuoristo, “Effect of powder type and composition on structure and mechanical properties of Cu + Al2O3 coatings prepared by using low-pressure cold spray process”, J. Therm. Spray Technol. 19 (5), 1081–1092 (2010).
  • [59] Q. Wang, K. Spencer, N. Birbilis, and M.-X. Zhang, “The influence of ceramic particles on bond strength of cold spray composite coatings on AZ91 alloy substrate”, Surf. Coat. Technol. 205, 50–56 (2010).
  • [60] K. Spencer, D.M. Fabijanic, and M.-X. Zhang, “The use of Al–Al O cold spray coatings to improve the surface properties of magnesium Alloys”, Surf. Coat. Technol. 204, 336–344 (2009).
  • [61] E. Irissou, J.-G. Legoux, B. Arsenault, and Ch. Moreau, “Investigation of Al-Al2O3 cold spray coating formation and properties”, J. Therm. Spray Technol. 16 (5‒6), 661‒668 (2007).
  • [62] H. Koivuluoto and P. Vuoristo, “Effect of ceramic particles on properties of cold-sprayed Ni-20Cr + Al2O3 coatings”, J. Therm. Spray Technol. 18 (4), 555–562 (2009).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-429fe5d9-8f42-443a-8a5d-b850b919f4db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.