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ABSTRACT

The transformation during wave propagation is significantly important for the calculations of hydraulic and coastal 
engineering, as well as the sediment transport. The exact wave height deformation calculation on the coasts is essential 
to near-shore hydrodynamics research and the structure design of coastal engineering. According to the wave shoaling 
results gained from the elliptical cosine wave theory, the nonlinear wave dispersion relation is adopted to develop the 
expression of the corresponding nonlinear wave shoaling coefficient. Based on the extended elliptic mild slope equation, 
an efficient wave numerical model is presented in this paper for predicting wave deformation across the complex 
topography and the surf zone, incorporating the nonlinear wave dispersion relation, the nonlinear wave shoaling 
coefficient and other energy dissipation factors. Especially, the phenomenon of wave recovery and second breaking 
could be shown by the present model. The classical Berkhoff single elliptic topography wave tests, the sinusoidal varying 
topography experiment, and complex composite slopes wave flume experiments are applied to verify the accuracy of 
the calculation of wave heights. Compared with experimental data, good agreements are found upon single elliptical 
topography and one-dimensional beach profiles, including uniform slope and step-type profiles. The results indicate 
that the newly-developed nonlinear wave shoaling coefficient improves the calculated accuracy of wave transformation 
in the surf zone efficiently, and the wave breaking is the key factor affecting the wave characteristics and need to be 
considered in the nearshore wave simulations.
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INTRODUCTION

Waves propagate from deep waters to shallow waters with 
wave heights changing due to shoaling, refraction, diffraction, 
reflection, bottom friction and breaking. The transformation 
above during wave propagation is significantly important 
for the calculations of hydraulic and coastal engineering, as 
well as the sediment transport. The breaking waves not only 
produce large forces on coastal structures but also give rise to 
near-shore currents which influence the beach topographies 
[5][10][15]. The exact wave height deformation calculation on 
the coasts is essential to near-shore hydrodynamics research 

and the structure design of coastal engineering.
Wave numerical models based on mild slope equation 

involving breaking have been proposed by many scholars[3]
[6][8][11][16-17][19][21-23]and the commonly used method is 
a wave energy dissipation coefficient for wave breaking, which 
is applicable to arbitrary reflective boundary conditions. 
Watanabe and Maruyama applied the time dependent mild 
slope equation to simulate the wave transformation in the 
surf zone, and found that the wave height was underestimated 
at the breaking point when applying a linear wave shoaling 
coefficient. To overcome this shortcoming of the linear 
mild slope equation, Black and Rosenberg[17] raised a 
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semi-empirical formula, but it is difficult to calculate the 
combined wave transformation on the coasts. Shuto’s 
empirical nonlinear shoaling equations is applied by Tsai[19] 
to deduce the wave shoaling coefficient and improve the mild 
slope equation, which produced better wave heights prediction 
but emerge restrictions when Ursell number is less than 30.

In this paper, the empirical nonlinear shoaling equations 
proposed by Shuto are utilized to develop the nonlinear wave 
shoaling coefficient corresponding to the nonlinear wave 
dispersion relation. The extended elliptic mild slope equation 
is modified with the nonlinear wave dispersion relation, the 
corresponding nonlinear wave shoaling coefficient, the wave 
frictional energy dissipation coefficient and the wave breaking 
energy loss coefficient to calculate the wave transformation in 
the complicated topographies and the surf zone. Compared 
with the linear wave model, the accuracy of the numerical 
calculations of modified wave model is improved and the 
computed wave heights under these topographies conform 
to the experimental results preferably.

WAVE DISPERSION RELATION

The nonlinear dispersion relation with higher precision 
could be expressed as[9]

Where, σ is the frequency of wave, g is the acceleration of 
gravity, k is the wave number, h is the water depth and the 
parameters p, q and ε could be written as

Where H is the wave height. With simple transformations 
and arrangements, another form of eq.(1) could be expression 
as follow

Where L is the wave length and T is the wave period. 
According to the formula structure of eq. (3), when the ratio 
of water depth and wave length is larger than 0.5 or the wave 
belongs to the deep water wave, eq. (3) could be written as

Where, L0 is the wave length in deep water and ε0 = k0H0 / 2. 
k0 and H0 are the wave number and the wave height in deep 
water, respectively. Combining eq. (3) and eq. (4), namely

(1)

(2)

(3)

(4)

(5)

Dividing by the wave period T at both ends of eq.(5), the 
relational expression of the wave phase velocity C and C0 in 
deep water could be indicated as

On the basis of the definition of wave group velocity, the 
expression of wave group velocity would be written as

Taking the derivative of the wave number for both ends of 
eq. (1), and substituting into eq. (7), the wave group velocity 
could be expressed as

Adopting eq. (2) to simplify eq. (8) further, namely

Then, the relational expression between wave group 
velocity Cg and the wave phase velocity C could be shown as

Where, the ratio N could be written as

When the wave locates in the deep water, eq. (11) could 
be simplified as

WAVE ENERGY EQUATION

WAVE SHOALING EFFECT

Wave energy equation is the foundation of wave 
transformation calculation[4]. In the process of monochromatic 
wave propagation, one dimension steady energy equation could 
be given by [1]

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)
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Where, E is the wave energy per unit area of the water body, 
f is the coefficient of combined energy dissipation, and x is 
the horizontal axis of the Cartesian coordinate perpendicular 
to the coastline. The wave energy dissipation on the right-
hand side of eq. (13) could be equal to zero if the energy was 
assumed without any loss, such as outside the surf zone[19]. 
According to the Airy wave theory, E = ρgH2 / 8and the wave 
shoaling coefficient could be shown as

Where, fs is the wave shoaling coefficient and n is the ratio 
of wave group velocity and the wave phase velocity due to the 
linear dispersion relation. If applying the nonlinear dispersion 
relation eq. (1), combining eq. (1) with eq. (13), yields

After further arrangement, namely

Substituting eq. (11) into eq. (16), the wave shoaling 
coefficient in the linear wave shoaling theory with nonlinear 
dispersion relation could be expressed as

Thus the liner wave shoaling conclusion proposed by Shuto 
can be evolved as

Based on the relational expressions as follow

Combining eq. (10), eq. (13) and eq. (19), the expression 
of wave shoaling coefficient could be shown as

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Where, βpo is the bottom slope along the wave transformation 
direction. Namely, the solution of eq. (20) is the derivation of 
three differential terms expressed by the wave characteristics.

In eq. (20), the derivative of wave velocity C with respect 
to the water depth h could be shown as

Due to the nonlinear dispersion relation equation (1), yields

Expanding and arranging the derivatives of composite 
functions in eq. (22), namely

Combining eq. (11) and eq. (23), the derivative of kh could 
be written as

Substituting eq. (24) into eq. (21), yields

In eq. (20), the derivative of ratio N with respect to the 
water depth h could be shown as

Expanding and arranging the derivatives of composite 
functions in eq. (26), namely

Where, the parameter Kw1 could be written as

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)
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And the parameter Kw2 could be written as

On the basis of eq. (5), the relational expression of the 
wave numbers in the coasts and in deep waters could be 
expressed as

Substituting eq. (30) into eq. (27), the parameters Kw1 and 
Kw2 could be written respectively as

In eq. (20), the derivative of wave energy E with respect 
to the water depth could be shown as

According to eq. (19), the expression of wave height is 
when the Ursell number is no larger than 

30, and eq. (33) could be shown as

When value range of the Ursell number is 30< Ur ≤ 50, 
H= Cw1h-2/7 and Cw1 is the coefficient. Namely,

When the Ursell number is larger than 50,  
and Cw2 is the coefficient. Substituting the expression of the 
Ursell number, Ur = gHT2 / h2, into the relational expression 
of wave height, yields

Taking the derivative of the water depth h for both ends 
of eq. (36), then

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

After the arrangement, eq. (37) could be transformed as

Substituting eq. (38) into eq. (34), yields

Combining eq. (25), eq. (27), eq. (34), eq. (35), eq. (39) with 
eq. (20), the wave nonlinear shoaling coefficient corresponding 
to the wave nonlinear dispersion relation raised by Li et al.[13] 
could be expressed as

Where, the parameters Kw1 and Kw2 could be expressed as 
eq. (31) and eq. (32), respectively. The parameter Kw3 could 
be written as

Eq. (40) would be adopted as the wave shoaling coefficient 
by the extended elliptic mild slope equation in this paper.

WAVE BREAKING EFFECT

The breaking index considering the bottom slope is 
following[15]

Based on the convenience of programming and the 
distinct classification, the breaking index proposed by Battjes 

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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would be adopted in the mild slope equation in this paper. 
The hydraulic jump model is used to compute the energy 
loss after the wave breaks. Subscribing the index above into 
wave energy equation, we can get the wave breaking energy 
dissipation coefficients:

WAVE FRICTIONAL EFFECT

In the most coasts, the energy dissipation produced by 
the bed frictions would be the primary cause compared with 
those by the permeability loss and the mud surface wave 
resistance loss.

According to the wave boundary layer theory, the work 
of the bed friction could be indicated as

Where, Df is the unit bed surface energy loss and fb is the 
wave frictional energy dissipation coefficient. And the unit 
bed surface energy loss could be shown as

Where Ub = Ubm cos(kx-σt) = Amσ cos(kx-σt) = (πH / 
Tsinh(kh)) cos(kx-σt). Combing eq. (47) and eq. (48), yields

Eq. (50) would be adopted in this paper for the wave energy 
dissipation due to the bed frictions.

THE WAVE MODEL BASED ON EXTENDED 
ELLIPTIC MILD SLOPE EQUATION 

The extended elliptic mild slope equation involving the 
energy dissipation stated above is applied to calculate the 
wave transformation. The governing equation of the extended 
elliptic mild slope equation [11] could be expressed as

(45)

(46)

(47)

(48)

(49)

(50)

(51)

Where

Where V = (∂/∂x, ∂/∂y) is the horizontal operator; Φ is 
the velocity potential function of the harmonic wave; V 
hand Vh

2 are the bottom slopes and bottom curvatures in 
the and directions, respectively;  and are the two horizontal 
coordinates; f = fs + fd + fb is the combined energy dissipation 
factor, and fs, fb and fd are calculated with eq.(41), eq.(49-1) and 
eq.(56) respectively. The nonlinear wave dispersion relation 
is adopted with eq. (1).

In order to verify the present model and test the 
computational accuracy, the classical and the slope flume 
experiments would be used including the Berkhoff single 
elliptical topography, sinusoidal varying topography, and 
uniform slope and composite slopes topography tests in the 
flume. In terms of reflecting the modification, the computed 
values of RIDE model established by Maa et al.[11], which 
adopted the linear wave theory, would be used to contrast 
with the present model.

BERKHOFF SINGLE ELLIPTICAL TOPOGRAPHY

Berkhoff et al.[2] conducted the wave propagating 
and transforming experiment on the ideal uniform slope 
topography with a single ellipse, and obtained the measured 
data of eight cross sections. In the numerical simulation, the 
height of incident wave is 0.0232 m, the period is 1.0 s and the 
direction is along the positive coordinate. The comparisons 
among computed values of the linear wave model of Maa et al., 
calculated results of the present model and experimental data 
in the cross section 1# ~ 8# are shown in Fig.2. The horizontal 
coordinate is the cross section, and the vertical coordinate is 
the ratio of local wave height and incident wave height. The 
black solid points in Fig.2 represent the experimental wave 
height data, the black dashed lines represent computed values 
of the linear wave model of Maa et al. and the black solid lines 
represent the calculated results of the present wave model. On 
the basis of the contrasts in Fig.2, although there are some 
obvious deviations in some locations, such as the significant 
error at 17m nearby in the 7# cross section, yet the calculated 
results of the present model coincide to the experimental 
results overall and the computed precision is preferable than 
the linear wave model of Maa et al.. Fig.3 shows the contrast 
about the computed wave height distribution fields between the 
linear wave model of Maa et al. and the present model. And the 
left figures are the computed values of the linear wave model 
of Maa et al., and the right figures are the calculated results of 
the present model. Based on the comparison of wave height 
distribution field, the calculated results of the present model 
make the wave energy more disperse after the single ellipse.

(52a)

(52b)
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The calibrations indicate that the nonlinear wave dispersion 
relation and the corresponding wave shoaling coefficient in 
the present model are able to improve the wave refraction and 
diffraction effects apparently under the complex topography.

Fig. 1. The single elliptical topography and arrangement of cross sections

Fig. 2. Compared computed values of the linear wave model of Maa et al.and 
calculated results of the present model with experimental wave height data in 

the eight different cross sections

Fig. 3. Compared computed wave height distribution field of the linear wave 
model of Maa et al. (left)with calculated wave height distribution field of the 

present model(right)

SINUSOIDAL VARYING TOPOGRAPHY

Davies and Heathershaw[20] carried out a series of 
experimental research on the wave transformation under 
various sand ripple numbers and water depth conditions. 
The wave situation with ten sand ripples is simulated by 
the present model. In the numerical simulation, the wave 
height of incident wave is 0.02 m, the period is 1.31 s, and the 
direction is along the positive coordinate. The fully absorbing 
condition is situated at x = 30 m. The comparisons between 
observed data and computed values under sinusoidal sand 
ripples terrain are listed in Fig.5. The horizontal coordinate 
is the distance from the wave incident position, and the 
vertical coordinate is the wave amplitude of local wave 
(Half of local wave height). The black solid points in Fig.5 
represent the observed wave amplitude data, and the black 
solid lines represent the calculated results of established wave 
models. In the light of the verifications in Fig.5, the calculated 
results of the wave mathematical model could coincide to the 
experimental data generally, and is capable of reflecting the 
tendency of wave deformation under the sinusoidal varying 
topography.

Fig. 4. Sinusoidal varying topography profile when ripple wavenumber equals 
to ten
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Fig. 5. Compared experimental wave height data observed in the flume with 
computed values of the present model

COMPOSITE SLOPES TOPOGRAPHY

The wave transformation experiment under the complex 
bar-type beach profile caught out by Nagayama[12] is applied 
to verify the present model, the topography profile is shown 
in Fig.6(a). The wave height of incident wave is 0.07 m, and 
the wave period is 1.18s. The numerical results of the present 
model are compared with the computed values of the linear 
wave model of Maa et al. and the experimental data, which are 
shown in Fig.6(b). Both the solution of the linear wave model 
of Maa et al. and the present model predict a second wave 
breaking at the tailing section of the 1/20 slope. For under this 
bar-type topography, the wave deformation includes the wave 
shoaling effect, wave frictional effect, wave decaying effect, 
wave recovery and the second breaking. It is found that the 
present model is in better agreement with the experimental 
results and of higher accuracy.

Fig. 6(a). Composite slopes topography profile with fronting and tailing slope 
1/20

Fig. 6(b). Compared computed values of the linear wave model of Maa et al. 
and calculated results of the present model with experimental wave height data 

along the wave propagation

CONCLUSION

The mild slope equation models applied in this paper have 
contained various modifications for the computations of 
combined wave shoaling, refraction, diffraction, reflection, 
bottom friction and breaking. In the surf zone, linear wave 

dispersion relation and linear wave shoaling coefficient 
have been adopted to improve the accuracy of wave height 
calculation. To overcome the error of the linear dispersion 
relation, the empirical nonlinear shoaling relation equations 
are utilized to develop the nonlinear wave shoaling coefficient 
corresponding to the nonlinear wave dispersion relation. 
The extended elliptic mild slope equation is modified with 
the nonlinear wave dispersion relation, the corresponding 
deduced nonlinear wave shoaling coefficient, the wave 
frictional energy dissipation coefficient and the wave breaking 
energy loss coefficient to calculate the wave transformation in 
the complicated topographies and the surf zone. The Berkhoff 
classical single elliptic topography experiment, some uniform 
slope and composite slope flume tests are applied to verify 
the modified wave model, and the calculated results coincide 
to the experimental data overall.
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