PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modern noninvasive methods for monitoring glucose levels in patients: a review

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the current state of the art of noninvasive glucose monitoring. In recent years, we can observe constant increase in the incidence of diabetes. About 40% of all performed blood tests apply to the glucose tests. Formerly, this lifestyle disease occurred mainly in rich countries, but now it is becoming more common in poorer countries. It is related to the increase in life expectancy, unhealthy diet, lack of exercise, and other factors. Untreated diabetes may cause many complications or even death. For this reason, daily control of glucose levels in people with this disorder is very important. Measurements with a traditional glucometer are connected with performing finger punctures several times a day, which is painful and uncomfortable for patients. Therefore, researches on other methods are ongoing. A method that would be fast, noninvasive and cheap could also enable testing the state of the entire population, which is necessary because of the number of people currently living with undiagnosed type 2 diabetes. Although the first glucometer was made in 1966, the first studies on glucose level measurement in tear film were documented as early as 1937. This shows how much a noninvasive method of diabetes control is needed. Since then, there have been more and more studies on alternative methods of glucose measurement, not only from tear fluid, but also from saliva, sweat, or transdermally.
Rocznik
Strony
art. no. 20190052
Opis fizyczny
Bibliogr. 109 poz., rys.
Twórcy
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wrocław, Poland
  • Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25 Wrocław, Poland
  • Faculty of Fundamental Problems of Technology, Department of Biomedical Engineering, Wrocław University of Science and Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland
  • Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25 Wrocław, Poland
autor
  • Material Science and Engineering, Faculty of Mechanical Engineering, Department of Mechanics, Wrocław University of Science and Technology, Smoluchowskiego 25 Wrocław, Poland
Bibliografia
  • [1] International Diabetes Federation. IDF Diabetes Atlas, 8th ed. 2017.
  • [2] Steiner MS, Duerkop A, Wolfbeis OS. Optical methods for sensing glucose. Chem Soc Rev 2011;40:4805-39.
  • [3] Rohrscheib M, Robinson R, Eaton RP. Non-invasive glucose sensors and improved informatics – the future of diabetes management. Diabetes Obes Metab 2003;5:280-4.
  • [4] Cunningham DD, Stenken JA. In vivo glucose sensing. Hoboken, NJ: John Wiley & Sons, 2009.
  • [5] Gamessa TW, Suman D, Tadesse ZK. Blood glucose monitoring techniques: recent advances, challenges and future perspectives. Int J Adv Technol Eng Explor 2018;5:335-44.
  • [6] Moodley N, Ngxamngxa U, Turzyniecka MJ, Pillay TS. Historical perspectives in clinical pathology: a history of glucose measurement. J Clin Pathol 2015;68:258-64.
  • [7] Michail D, Vancea P, Zolog N. Sur l’elimination lacrymale du glucose chez les diabetiques. CR Soc Biol 1937;125:1095.
  • [8] Belle JT, Bishop DK, Vossler SR, Patel DR, Cook CB. A disposable tear glucose biosensor – Part 1: design and concept testing. J Diabetes Sci Technol 2010;4:299-306.
  • [9] Belle JT, Bishop DK, Vossler SR, Patel DR, Cook CB. A disposable tear glucose biosensor - Part 2: system integration and model validation. J Diabetes Sci Technol 2010;4:307-11.
  • [10] Patel JN, Gray BL, Kaminska B, Gates BD. Flexible three-dimensional electrochemical glucose sensor with improved sensitivity realized in hybrid polymer microelectromechanical systems technique. J Diabetes Sci Technol 2011;5:1036-43.
  • [11] Chu MX, Miyajima K, Takahashi D, Arakawa T, Sano K, Sawada S, et al. Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. Talanta 2011;83:960-5.
  • [12] Ascaso FJ, Huerva V. Noninvasive continuous monitoring of tear glucose using glucose-sensing contact lenses. Optom Vis Sci 2016;93:426-34.
  • [13] March WF, Mueller A, Herbrechtsmeier P. Clinical trial of a noninvasive contact lens glucose sensor. Diabetes Technol Ther 2004;6:782-9.
  • [14] Iguchi S. A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices 2007;9:603-9.
  • [15] Kagie A, Bishop DK, Burdick J, La Belle JT, Dymond R, Felder R, et al. Flexible rolled thick-film miniaturized flow-cell for minimally invasive amperometric sensing. Electroanalysis 2008;20:1610-4.
  • [16] Chu MX, Kudo H, Shirai T, Miyajima K, Saito H, Morimoto N, et al. A soft and flexible biosensor using a phospholipid polymer for continuous glucose monitoring. Biomed Microdevices 2009;11:837-42.
  • [17] Alexeev VL, Das S, Finegold DN, Asher SA. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin Chem 2004;50:2353-60.
  • [18] Yao H, Afanasiev A, Lähdesmäki I, Parviz BA. A dual microscale glucose sensor on a contact lens, tested in conditions mimicking the eye. Proc IEEE Int Conf Micro Electro Mech Syst 2011;1:25-8.
  • [19] Yao H, Liao Y, Lingley AR, Afanasiev A, Lähdesmäki I, Otis BP, et al. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring. J Micromech Microeng 2012;22.
  • [20] Lan K, McAferty K, Shah P, Lieberman E, Patel DR, Cook CB, et al. A disposable tear glucose biosensor - Part 3: assessment of enzymatic specificity. J Diabetes Sci Technol 2011;5:1108-15.
  • [21] Yao H, Marcheselli C, Afanasiev A, Lähdesmäki I, Parviz BA. A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring. Proc IEEE Int Conf Micro Electro Mech Syst (MEMS) 2012;769-772.
  • [22] Ben-Moshe M, Alexeev VL, Asher SA. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal Chem 2006;78:5149-57.
  • [23] Asher SA, Alexeev VL, Goponenko AV, Sharma AC, Lednev IK, Wilcox CS, et al. Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J Am Chem Soc 2003;125:3322-9.
  • [24] Kim J, Kim M, Lee M-S, Kim K, Ji S, Kim Y-T, et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat Commun 2017;8:1-8.
  • [25] Park J, Kim J, Kim S-Y, Cheong WH, Jang J, Park Y-G, et al. Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 2018;4:1-12.
  • [26] La Belle JT, Engelschall E, Lan K, Shah P, Saez N, Maxwell S, et al. A disposable tear glucose biosensor – Part 4: preliminary animal model study assessing efficacy, safety, and feasibility. J Diabetes Sci Technol 2014;8:109-16.
  • [27] Lin CE, Ito Y, Deng A, Johns J, Matloff D, Cook CB, et al. A disposable tear glucose biosensor - Part 5: improvements in reagents and tear sampling component. J Diabetes Sci Technol 2018;12:842-6.
  • [28] Ward Muscatello MM, Stunja LE, Asher SA. Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal Chem 2009;81:4978-86.
  • [29] Taguchi M, Ptitsyn A, McLamore ES, Claussen JC. Nanomaterial-mediated biosensors for monitoring glucose. J Diabetes Sci Technol 2014;8:403-11.
  • [30] Liao YT, Yao H, Lingley A, Parviz B, Otis BP. A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J SolidState Circuits 2012;47:335-44.
  • [31] Asher SA, Baca JT. Tear fluid photonic crystal contact lens: noninvasive glucose sensors. Handbook of Optical Sensing of Glucose 2008:389-419.
  • [32] Zhang J, Hodge W, Hutnick C, Wang X. Noninvasive diagnostic devices for diabetes through measuring tear glucose. J Diabetes Sci Technol 2011;5:166-72.
  • [33] Zhang W, Du Y, Wang ML. On-chip highly sensitive saliva glucose sensing using multilayer films composed of single-walled carbon nanotubes, gold nanoparticles, and glucose oxidase. Sens Bio-Sensing Res 2015;4:96-102.
  • [34] Zhang W, Du Y, Wang ML. Noninvasive glucose monitoring using saliva nano-biosensor. Sens Bio-Sensing Res 2015;4:23-9.
  • [35] Arakawa T, Kuroki Y, Nitta H, Chouhan P, Toma K, Sawada S, et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens Bioelectron 2016;84:106-11.
  • [36] Soni A, Jha SK. Smartphone based non-invasive salivary glucose biosensor. Anal Chim Acta 2017;996:54-63.
  • [37] Lin C, Pratt B, Honikel M, Jenish A, Ramesh B, Alkhan A, Toward the development of a glucose dehydrogenase-based saliva glucose sensor without the need for sample preparation. J Diabetes Sci Technol 2018;12:83-89.
  • [38] Soni A, Jha SK. A paper strip based non-invasive glucose biosensor for salivary analysis. Biosens Bioelectron 2015;67;763-8.
  • [39] Kim J, Campbell AS, Wang J. Wearable non-invasive epidermal glucose sensors: a review. Talanta 2018;177:163-70.
  • [40] Saur NM, England MR, Menzie W, Melanson AM, Trieu MQ, Berlin J, et al. Accuracy of a novel noninvasive transdermal continuous glucose monitor in critically ill patients. J Diabetes Sci Technol 2014;8:945-50.
  • [41] Czupryniak L, Strojek K. Diabetologia 2016. 2 ed. Via Medica, 2016:128.
  • [42] Figure S. Encyclopedia of medical history. 1985.
  • [43] Izworski A, Koleszynska J, Tadeusiewicz R, Bulka J, Wochlik I. Gigisim (glucose-insulin and Glycemic Index web simulator) - The online system supporting diabetes therapy. 2005.
  • [44] World Health Organization. (2016). Global report on diabetes. World Health Organization.
  • [45] Bartlett PN. Bioelectrochemistry. John Wiley & Sons, Ltd, 2008:494.
  • [46] Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, et al. Recent advances in electrochemical glucose biosensors: a review. RSC Adv 2013;3:4473-91.
  • [47] May JD. Blood glucose meters test-strip calibration. 2010:1-7.
  • [48] Tadeusiewicz R. Neural network as a tool for medical signals filtering, diagnosis aid, therapy assistance and forecasting improving. IFMBE Proceedings. Vol. 25/IV. Berlin: Springer, 2009:1532-1534.
  • [49] Wang H, Lee A. Recent developments in blood glucose sensors. J Food Drug Anal 2015;23:191-200.
  • [50] Clark Jr L. Membrane polarographic electrode system and method with electrochemical compensation, US Patent 33,539,455. Patented: Nov. 10, 1970.
  • [51] Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 1962;102:29-45.
  • [52] Oliver NS, Toumazou C, Cass AE, Johnston DG. Glucose sensors: a review of current and emerging technology. Diabet Med 2009;26:197-210.
  • [53] Jain FC, Ph D, Papadimitrakopoulos F, Ph D. Technologies for continuous glucose monitoring: current problems and future promises. 2010;4:1540-62.
  • [54] Yadav J, Rani A, Singh V, Murari BM. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed Signal Process Control 2015;18:214-27.
  • [55] Vashist SK. Non-invasive glucose monitoring technology in diabetes management: a review. Anal Chim Acta 2012;750:16-27.
  • [56] Qiang T, Wang C, Kim NY. Quantitative detection of glucose level based on radiofrequency patch biosensor combined with volume-fixed structures. Biosens Bioelectron 2017;98:357-63.
  • [57] Cios KJ, Mamitsuka H, Nagashima T, Tadeusiewicz R. Computational intelligence in solving bioinformatics problems. Artif Intell Med 2005;35:1-8.
  • [58] Ferrante do Amaral CE, Wolf B. Current development in non-invasive glucose monitoring. Med Eng Phys 2008;30:541-9.
  • [59] Tadeusiewicz R, Augustyniak P. Automatic management of tele-interpretation knowledge in a wearable diagnostic device. In Biometrics, Computer Security Systems and Artificial Intelligence Applications. Boston, MA: Springer US, 2007:311-21.
  • [60] Vettoretti M, Cappon G, Acciaroli G, Facchinetti A, Sparacino G. Continuous glucose monitoring: current use in diabetes management and possible future applications. J Diabetes Sci Technol 2018;12:1064-71.
  • [61] Heintzman ND. A digital ecosystem of diabetes data and technology: services, systems, and tools enabled by wearables, sensors, and apps. J Diabetes Sci Technol 2016;10(1):35-41.
  • [62] Tricoli A, Nasiri N, De S. Wearable and miniaturized sensor technologies for personalized and preventive medicine. Adv Funct Mater 2017;27:1-19.
  • [63] Klonoff DC, Ahn D, Drincic A. Continuous glucose monitoring: a review of the technology and clinical use. Diabetes Res Clin Pract 2017;133:178-92.
  • [64] Schwartz FL, Marling CR, Bunescu RC. The promise and perils of wearable physiological sensors for diabetes management. J Diabetes Sci Technol 2018;12:587-91.
  • [65] Caduff A, Talary MS, Zakharov P. Cutaneous blood perfusion as a perturbing factor for noninvasive glucose monitoring. Diabetes Technol Ther 2010;12:1-9.
  • [66] Helwig AM, Arnold MA, Small GW. Evaluation of kromoscopy: resolution of glucose and urea. Appl Opt 2000;39:4715-20.
  • [67] Tiffany JM. Tears in health and disease. Eye 2003;17:923-6.
  • [68] Bandodkar AJ, Wang J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 2014;32:363-71.
  • [69] Sim JY, Ahn CG, Jeong EJ, Kim BK. In vivo microscopic photoacoustic spectroscopy for non-invasive glucose monitoring invulnerable to skin secretion products. Sci Rep 2018;8:1-11.
  • [70] Esenaliev R, Larin K, Larina I, Motamedi M. Noninvasive monitoring of glucose concentration with optical coherence tomography. Opt Lett 2001;26:992-4.
  • [71] Sapozhnikova VV, Kuranov RV, Cicenaite I. Effect on blood glucose monitoring of skin pressure exerted by an optical coherence tomography probe. J Biomed Opt 2008;13:021112.
  • [72] Sapozhnikova VV, Prough D, Kuranov RV, Cicenaite I, Esenaliev RO. Influence of osmolytes on in vivo glucose monitoring using optical coherence tomography. Exp Biol Med 2006;231:1323-32.
  • [73] Heinemann L, Krämer U, Klötzer HM, Hein M, Volz D, Hermann M. Non-invasive glucose measurement by monitoring of scattering coef- ficient during oral glucose tolerance tests. Diabetes Technol Ther 2000;2:211-20.
  • [74] Fine I, Fikhte B, Shvartsman L. Occlusion spectroscopy as a new paradigm for non-invasive blood measurements. Proc Soc Photo Opt Instrum Eng 2001;4263:122-30.
  • [75] Amir O, Weinstein D, Zilberman S, Less M, Perl-Treves D, Primack H. Continuous non-invasive glucose monitoring technology based on ‘occlusion spectroscopy. J Diabetes Sci Technol 2007;1:463-9.
  • [76] OrSense Official Website. Online: https://www.orsense.com/ [access date: 25.09.2019].
  • [77] Cameron B, Anumula H. Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Diabetes Technol Ther 2006;8:156-64.
  • [78] Cameron B, Baba J, Coté G. Measurement of the glucose transport time delay between the blood and aqueous humour of the eye for the eventual development of a non-invasive glucose sensor. Diabetes Technol Ther 2001;3:201-7.
  • [79] Malchoff C, Shoukri K, Landau J, Buchert J. A novel non-invasive blood glucose monitor. Diabetes Care 2002;25:2268-75.
  • [80] Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJ. Fluorescence-based glucose sensors. Biosens Bioelectron 2005;20:2555-65.
  • [81] Zhang J, Wang X, Chen L, Li J, Luzak K. Harnessing a nanostructured fluorescence energy transfer sensor for quick detection of extremely small amounts of glucose. J Diabetes Sci Technol 2013;7:45-52.
  • [82] McNichols RJ, Coté GL. Optical glucose sensing in biological fluids: an overview. J Biomed Opt 2000;5:5-16.
  • [83] Lundsgaard-Nielsen SM, Pors A, Banke SO, Henriksen JE, Hepp DK, Weber A. Critical-depth Raman spectroscopy enables home-use noninvasive glucose monitoring. PLoS One 2018;13:1-11.
  • [84] Li QB, Li LN, Zhang GJ. A nonlinear model for calibration of blood glucose noninvasive measurement using near infrared spectroscopy. Infrared Phys Technol 2010;53:410-7.
  • [85] Heise HM, Bittner A, Marbach R. Clinical chemistry and near infrared spectroscopy: technology for non-invasive glucose monitoring. J Near Infrared Spectrosc 1998;6:349-59.
  • [86] Goodarzi M, Sharma S, Ramon H, Saeys W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. TrAC - Trends Anal Chem 2015;67:147-58.
  • [87] Goodarzi M, Saeys W. Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum. Talanta 2016;146:155-65.
  • [88] Kajiwara K, Uemara T, Kishikawa H, Nishida K, Hashiguchi Y, Uehara M. Non-invasive measurement of blood glucose concentrations by analysing Fourier transform infra-red absorbance spectra through oral mucosa. Med Biol Eng Comput 1993;31:S17-22.
  • [89] Zeng B, Wang W, Wang N, Li F, Zhai F, Hu L. Noninvasive blood glucose monitoring system based on distributed multi-sensors information fusion of multi-wavelength NIR. Engineering 2013;5:553-60.
  • [90] Li Z, Li G, Yan WJ, Lin L. Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy. Infrared Phys Technol 2014;67:574-82.
  • [91] Yadav J, Rani A, Singh V, Murari BM. Comparative study of different measurement sites using NIR based non-invasive glucose measurement system. Procedia Comput Sci 2015;70:469-75.
  • [92] Jintao X, Liming Y, Yufei L, Chunyan L, Han C. Spectrochimica Acta Part A: molecular and biomolecular spectroscopy noninvasive and fast measurement of blood glucose in vivo by near infrared (NIR) spectroscopy. Spectrochim Acta Part A Mol Biomol Spectrosc 2017;179:250-4.
  • [93] Chowdhury K, Srivastava A, Sharma N, Sharma S. Challenges and countermeasures in optical noninvasive blood glucose detection. Int J Innov Res Sci Eng Technol 2013;2:329-34.
  • [94] Zhang Y, Zhu JM, Liang YB, Chen HB, Yin SM, Chen ZC. Non-invasive blood glucose detection system based on conservation of energy method. Physiol Meas 2017;38:325-42.
  • [95] Zumoffen D, Campetelli G, Basualdo M. Improvements on noninvasive blood glucose biosensors using wavelets for quick fault detection. J Sensors 2011;2011:1-11.
  • [96] Kiistala U. Suction blister device for separation of viable epidermis from dermis. J Invest Dermatol 1968;50:129-37.
  • [97] Volden G, Thorsrud AK, Bjornson I, Jellum E. Biochemical composition of suction blister fluid determined by high resolution multicomponent analysis (capillary gas chromatography-mass spectrometry and two-dimensional electrophoresis). J Invest Dermatol 1980;75:421-4.
  • [98] Jensen BM, Bjerring P, Christiansen JS, Orskov H. Glucose content in human skin - relationship with blood glucose levels. Scand J Clin Lab Invest 1995;55:427-32.
  • [99] Lee S, Nayak V, Dodds J, Pishko M, Smith NB. Glucose measurements with sensors and ultrasound. Ultrasound Med Biol 2005;31:971-7.
  • [100] Rao G, Guy RH, Glikfeld P, LaCourse WR, Leung L, Tamada J, et al. Reverse iontophoresis: noninvasive glucose monitoring in vivo in humans. Pharm Res 1995;12:1869-73.
  • [101] Potts RO, Tamada JA, Tierney MJ. Glucose monitoring by reverse iontophoresis. Diabetes Metab Res Rev 2002;18:49-53.
  • [102] Mitsubayashi K, Dicks JM, Yokoyama K, Takeuchi T, Tamiya E, Karube I. A flexible biosensor for glucose. Electroanalysis 1995;7:83-7.
  • [103] Mitsubayashi K, Wakabayashi Y, Tanimoto S, Murotomi D, Endo T. Optical-transparent and flexible glucose sensor with ITO electrode. Biosens Bioelectron 2003;19:67-71.
  • [104] Domschke AM. Continuous non-invasive opthalmic glucose sensor for diabetics. Chimia (Aarau) 2010;64:43-4.
  • [105] Shang J, Yan J, Zhanga Z, Huanga X, Maturavongsadit P, Song B, et al. A hydrogel-based glucose affinity microsensor. Sensors Actuators B Chem 2016;237:992-8.
  • [106] Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA. A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 2011;26:3290-6.
  • [107] Hu Y, Jiang X, Zhang L, Fan J, Wu W. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears. Biosens Bioelectron 2013;48:94-9.
  • [108] Agustini D, Bergamini MF, Marcolino-Junior LH. Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosens Bioelectron 2017;98:161-7.
  • [109] Kim J, Campbell AS, de Ávila BE, Wang J. Wearable biosensors for healthcare monitoring. Nat Biotechnol 2019;37:389-406.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-429b85bf-d950-40b1-a642-38a1cdd9e174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.