PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Wpływ efektu zbliżeniowego i naskórkowości na straty mocy w tworniku

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Analysis of proximity effect and skin effect on copper loss in armature
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono analizę strat mocy w żelazie i miedzi przy zasileniu uzwojenia sygnałem sinusoidalnym o wysokich częstotliwościach. Straty mocy wyznaczone z modelu matematycznego silnika zweryfikowano z pomiarami jakie wykonano na zbudowanym prototypie rdzenia stojana silnika komutatorowego z nawiniętym uzwojeniem. W badaniach uwzględniono wpływ efektu naskórkowości oraz efektu zbliżeniowego na straty mocy w miedzi. Głównym zagadnieniem w pracy było zbadanie wpływu pola magnetycznego połączeń czołowych uzwojeń na straty mocy, poprzez porównanie obliczeń na modelach dwuwymiarowych (2D) i trójwymiarowych (3D) opartych na metodzie elementów skończonych (MES).
EN
Accurate prediction of power loss distribution within an electrical device is highly desirable as it allows for thermal behavior to be evaluated at the early design stage. This paper focuses on the ac copper loss caused by circulating current effects in electrical machines. Two different phenomena lead to additional ac losses: skin effect and proximity effect. Skin effect is the tendency for high frequency currents to flow on the surface of a conductor and can be mitigated through the use of small conductor strands. The proximity effect is the tendency for current to flow in other undesirable patterns that form localized current loops or concentrated distribution due to the presence of a magnetic field generated by nearby conductors. To evaluate the ac copper loss within the analyzed machine a simplified approach is adopted utilizing the segmented stator topology. To minimize and show an effect of proximity and/or end-winding on the ac copper loss at presented electrical machine a number of winding arrangement are investigated. Three-dimensional and two-dimensional finite element analysis was applied to calculate a ratio of ac to dc resistant at high frequency sinusoidal current. This resistant ratio demonstrates the amount of copper loss which is increased by high frequency. The resistant ratio is strongly dependent on frequency, temperature and shape of slot and size of slot opening. The theoretical finding is compared against the experimental data of total power losses.
Rocznik
Strony
44--48
Opis fizyczny
Bibliogr. 13 poz., rys., wykr.
Twórcy
autor
  • GKN EVO EDRIVE SYSTEMS LIMITED
autor
  • Politechnika RZESZOWSKA, Wydział Elektrotechniki i Informatyki
autor
  • Politechnika RZESZOWSKA, Wydział Elektrotechniki i Informatyki
  • Politechnika OPOLSKA, Wydział Elektrotechniki, Automatyki i Informatyki
Bibliografia
  • [1] Dorrell D.G.: Combined thermal and electromagnetic analysis of permanent-magnet and induction machines to aid calculation, IEEE Transactions on Industrial Electronics, Vol. 55, No. 10, (2008), 3566-3574
  • [2] Hey J., Howey D.A., Martinez-Botas R., Lamperth M.: Transient thermal modelling of an axial flux permanent magnet (AFPM) machine using a hybrid thermal model, International Journal of Mechanical and Materials Engineering, (2010), 691-699
  • [3] Vilar Z.W., Patterson D., Dougal R.A.: Thermal analysis of a single sided axial flux permanent magnet motor, Industrial Electronics Society, IECON, 31st Annual Conference of IEEE, (2005)
  • [4] Zheng P., Nordlund E., Thelin P., Sadarangani C.: Investigation of the winding current distribution in a 4-quadrant-transducer prototype machine, IEEE Transactions on Magnetics, Vol. 41, No. 5, (2005), 1972-1975
  • [5] Chen W., Liu Y., Islam J., Svechkarenko D.: Strand-level finite element model of stator AC copper losses in the high speed machines, XXth International Conference on Electrical Machines (ICEM), (2012), 477-482
  • [6] Wojda R.P., Kazimierczuk K.: Analytical optimization of solidround- wire windings, IEEE Transactions on Industrial Electronics, Vol. 60, No. 3, (2013), 1033-1041
  • [7] Wu L.J., Zhu Z.Q., Staton D., Popescu M., Hawkins D.: Analytical model of eddy current loss in windings of permanentmagnet machines accounting for load, IEEE Transactions on Magnetics, Vol. 48, No. 7, (2012), 2136-2151
  • [8] Sullivan Charles R.: Computationally efficient winding loss calculation with multiple windings, arbitrary waveforms, and two-dimensional or three-dimentional field geometry, IEEE Transactions on Power Electronics, Vol. 16, No. 1, (2001), 142-150
  • [9] Spang M., Albach M.: Optimized winding layout for minimized proximity losses in coils with rod cores, IEEE Transactions on Magnetics, Vol. 44, No. 7, (2008), 1815-1821
  • [10] Hanselman D.C., Peake W.H.: Eddy-current effects in slotboun conductors, IEE Proceedings Electric Power Applications, Vol. 142, No. 2, (1995)
  • [11] Petkov R.: Optimum design of a high-power, high-frequency transformer, IEEE Transactions on Power Electronics, Vol. 11, No.1, (1996), 33-42
  • [12] 10.3 Documentation, 2009, Cedrat Group.
  • [13] Wrobel R., Mlot A., Mellor P.H.: Contribution of end-winding proximity losses to temperature variation in electromagnetic devices, IEEE Transactions on Industrial Electronics, vol. 58, no. 2, (2012), 848-857
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-429481a2-7bea-431a-bad1-a978b3021b6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.