Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
GPCRs are a vast family of seven-domain transmembrane proteins. This family includes dopamine receptors (D1, D2, D3, D4, and D5), which mediate the variety of dopamine-controlled physiological functions in the brain and periphery. Ligands of dopamine receptors are used for managing several neuropsychiatric disorders, including bipolar disorder, schizophrenia, anxiety, and Parkinson’s disease. Recent studies have revealed that dopamine receptors could be part of multiple signaling cascades, rather than of a single signaling pathway. For these targets, a variety of experimental and computational drug design techniques are utilized. In this work, dopamine receptors D2, D3, and D4 were investigated using molecular dynamic method as well as computational ab initio Fragment Molecular Orbital method (FMO), which can reveal atomistic details about ligand binding. The results provided useful insights into the significances of amino acid residues in ligand binding sites. Moreover, similarities and differences between active-sites of three studied types of receptors were examined.
Czasopismo
Rocznik
Tom
Strony
24--32
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St, 31–155 Cracow, Poland
autor
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24 St, 31–155 Cracow, Poland
Bibliografia
- 1. Beaulieu J.M., Gainetdinov R.R. The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol Rev. 2011;63:182–217.
- 2. Vallone D., Picetti R., Borrelli E. Structure and function of dopamine receptors. Neurosci Biobehav Rev. 2000;24(1):125–32.
- 3. Beaulieu J.M., Gainetdinov R.R., Caron M.G. The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci. 2007;28(4):166–72.
- 4. Wang M., Wong A.H., Liu F. Interactions between NMDA and dopamine receptors: A potential therapeutic target. Brain Res. 2012;1476:154–63.
- 5. Damian M., Pons V., Renault P., M’Kadmi C., Delort B., Hartmann L., et al. GHSR-D2R heteromerization modulates dopamine signaling through an effect on G protein conformation. Proc Natl Acad Sci. 2018;115(17):4501–6.
- 6. Dong N., Lee D.W.K., Sun H.S., Feng Z.P. Dopamine-mediated calcium channel regulation in synaptic suppression in l. Stagnalis interneurons. Channels. 2018;12(1):153–73.
- 7. Hasbi A., Fan T., Alijaniaram M., Nguyen T., Perreault M., O’Dowd B.F., et al. Calcium signaling cascade links dopaminę D1–D2 receptor heteromer to striatal BDNF production and neuronal growth. Proc Natl Acad Sci. 2009;106(50):21477–21382.
- 8. Hasbi A., O’Dowd B.F., George S.R. Heteromerization of dopamine D2 receptors with dopamine D1 or D5 receptors generates intracellular calcium signaling by different mechanisms. Curr Opin Pharmacol. 2010;10(1):93–9.
- 9. Iwakura Y., Nawa H., Sora I., Chao M.V. Dopamine D1 receptor- induced signaling through TrkB receptors in striatal neurons. J Biol Chem. 2008;283(23):15799–806.
- 10. Kotecha S.A., Oak J.N., Jackson M.F., Perez Y., Orser B.A., Van Tol H.H.M., et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron. 2002;35(6):1111–22.
- 11. Marion S., Urs N.M., Peterson S.M., Sotnikova T.D., Beaulieu J.-M., Gainetdinov R.R., et al. Dopamine D2 Receptor Relies upon PPM/PP2C Protein Phosphatases to Dephosphorylate Huntingtin Protein. J Biol Chem. 2014;289(17):11715–24.
- 12. Medvedev I.O., Ramsey A.J., Masoud S.T., Bermejo M.K., Urs N., Sotnikova T.D., et al. D1 dopamine receptor coupling to PLCβ regulates forward locomotion in mice. J Neurosci. 2013;33(46):18125–33.
- 13. Luderman K.D., Conroy J.L., Free R.B., Southall N., Ferrer M., Sanchez-Soto M., et al. Identification of positive allosteric modulators of the D 1 dopamine receptor that act at diverse binding sites S. Mol Pharmacol. 2018;94(4):1197–209.
- 14. Shen Y., McCorvy J.D., Martini M.L., Rodriguiz R.M., Pogorelov V.M., Ward K.M., et al. D2 Dopamine Receptor G Protein-Biased Partial Agonists Based on Cariprazine. J Med Chem. 2019;62(9):4755–71.
- 15. Bonifazi A., Yano H., Guerrero A.M., Kumar V., Hoffman A.F., Lupica C.R., et al. Novel and Potent Dopamine D 2 Receptor Go-Protein Biased Agonists . ACS Pharmacol Transl Sci. 2019;2(1):52–65.
- 16. Chun L.S., Vekariya R.H., Free R.B., Li Y., Lin D.T., Su P., et al. Structure-activity investigation of a G protein-biased agonist reveals molecular determinants for biased signaling of the D2 dopamine receptor. Front Synaptic Neurosci. 2018;10:1–18.
- 17. Gordon M.S., Fedorov D.G., Pruitt S.R., Slipchenko L.V. Fragmentation methods: A route to accurate calculations on large systems. Chem Rev. 2012;112(1):632–72.
- 18. Fedorov D.G. The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. Wiley Interdiscip Rev Comput Mol Sci. 2017;7(6):1–17.
- 19. Fedorov D.G., Avramov P.V., Jensen J.H., Kitaura K. Analytic gradient for the adaptive frozen orbital bond detachment in the fragment molecular orbital method. Chem Phys Lett. 2009;477(1–3):169–75.
- 20. Fedorov D.G., Jensen J.H., Deka R.C., Kitaura K. Covalent bond fragmentation suitable to describe solids in the fragment molecular orbital method. J Phys Chem A. 2008;112(46):11808–16.
- 21. Fedorov D.G., Kitaura K. The importance of three-body terms in the fragment molecular orbital method. J Chem Phys. 2004;120:6832–40.
- 22. Fedorov D.G., Kitaura K. Second order Møller-Plesset perturbation theory based upon the fragment molecular orbital method. J Chem Phys. 2004;121(6):2483–90.
- 23. Shimamura K., Ishimura H., Kobayashi I., Kadoya R., Kurita N., Kawai K., et al. Molecular dynamics and ab initio FMO calculations on the effect of water molecules on the interactions between androgen receptor and its ligand and cofactor. 4th IGNITE Conf 2016 Int Conf Adv Informatics Concepts, Theory Appl ICAICTA 2016. 2016;1–6.
- 24. Fedorov D.G., Kitaura K. Pair interaction energy decomposition analysis. J Comput Chem. 2007;28(1):222–37.
- 25. Chudyk E.I., Sarrat L., Aldeghi M., Fedorov D.G., Bodkin M.J., James T., et al. Exploring GPCR-ligand interactions with the fragment molecular orbital (FMO) method. Methods Mol Biol. 2018;1705:179–95.
- 26. Akimov A.V. Nonadiabatic Molecular Dynamics with Tight-Binding Fragment Molecular Orbitals. J Chem Theory Comput. 2016;12(12):5719–36.
- 27. Doi H., Okuwaki K., Mochizuki Y., Mochizuki Y., Ozawa T., Yasuoka K. Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-Palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane. Chem Phys Lett. 2017;684:427–32.
- 28. Gaus M., Cui Q., Elstner M. Density functional tight binding: Application to organic and biological molecules. Wiley Interdiscip Rev Comput Mol Sci. 2014;4(1):49–61.
- 29. Ishimura H., Tomioka S., Kadoya R., Shimamura K., Okamoto A., Shulga S., et al. Specific interactions between amyloid-Β peptides in an amyloid-Β hexamer with three-fold symmetry: Ab initio fragment molecular orbital calculations in water. Chem Phys Lett. 2017;672:13–20.
- 30. Kobayashi I., Takeda R., Suzuki R., Shimamura K., Ishimura H., Kadoya R., et al. Specific interactions between androgen receptor and its ligand: ab initio molecular orbital calculations in water. J Mol Graph Model. 2017;75:383–9.
- 31. Komeiji Y., Okiyama Y., Mochizuki Y., Fukuzawa K. Interaction between a Single-Stranded DNA and a Binding Protein Viewed by the Fragment Molecular Orbital Method. Bull Chem Soc Jpn. 2018;91(11):1596–605.
- 32. Ozawa M., Ozawa T., Ueda K. Application of the fragment molecular orbital method analysis to fragment-based drug discovery of BET (bromodomain and extra-terminal proteins) inhibitors. J Mol Graph Model. 2017;74:73–82.
- 33. Sawada T., Hashimoto T., Nakano H., Suzuki T., Ishida H., Kiso M. Why does avian influenza A virus hemagglutinin bind to avian receptor stronger than to human receptor? Ab initio fragment molecular orbital studies. Biochem Biophys Res Commun. 2006;351(1):40–3.
- 34. Simoncini D., Nakata H., Ogata K., Nakamura S., Zhang K.Y.J. Quality Assessment of Predicted Protein Models Using Energies Calculated by the Fragment Molecular Orbital Method. Mol Inform. 2015;34(2–3):97–104.
- 35. Śliwa P., Kurczab R., Bojarski A.J. ONIOM and FMO-EDA study of metabotropic glutamate receptor 1: Quantum insights into the allosteric binding site. Int J Quantum Chem. 2018;118(15):e25617.
- 36. Śliwa P., Kurczab R., Kafel R., Drabczyk A., Jaśkowska J. Recognition of repulsive and attractive regions of selected serotonin receptor binding site using FMO-EDA approach. J Mol Model. 2019 6;25(5):114.
- 37. Steinmann C., Ibsen M.W., Hansen A.S., Jensen J.H. FragIt: A Tool to Prepare Input Files for Fragment Based Quantum Chemical Calculations. PLoS One. 2012;7(9).
- 38. Takeda R., Kobayashi I., Suzuki R., Kawai K., Kittaka A., Takimoto-Kamimura M., et al. Proposal of potent inhibitors for vitamin-D receptor based on ab initio fragment molecular orbital calculations. J Mol Graph Model. 2018;80:320–6.
- 39. Terauchi Y., Suzuki R., Takeda R., Kobayashi I., Kittaka A., Takimoto-Kamimura M., et al. Ligand chirality can affect histidine protonation of vitamin-D receptor: ab initio molecular orbital calculations in water. J Steroid Biochem Mol Biol. 2019;186:89–95.
- 40. Vuong V.Q., Nishimoto Y., Fedorov D.G., Sumpter B.G., Niehaus T.A., Irle S. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. J Chem Theory Comput. 2019;15(5):3008–20.
- 41. Yoshino R., Yasuo N., Inaoka D.K., Hagiwara Y., Ohno K., Orita M., et al. Pharmacophore modeling for anti-Chagas drug design using the fragment molecular orbital method. PLoS One. 2015;10(5):1–15.
- 42. Willighagen E.L., Waagmeester A., Spjuth O., Ansell P., Williams A.J., Tkachenko V., et al. The ChEMBL database as linked open data. J Cheminform. 2013;5(5):1–12.
- 43. Phillips J.C., Braun R., Wang W., Gumbart J., Tajkhorshid E., Villa E., et al. Scalable molecular dynamics with NAMD. J Comput Chem. 2005;26(16):1781–802.
- 44. Vonommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., et al. CHARMM General Force Field: A Force Field for Drug-Like Molecules Compatible with the CHARMM All-Atom Additive Biological Force Fields. J Comput Chem. 2009;31(4):671–90.
- 45. Lomize M.A., Pogozheva I.D., Joo H., Mosberg H.I., Lomize A.L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 2012;40(D1):D370–6.
- 46. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., et al. UCSF Chimera – A visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
- 47. Suenaga M. FACIO. Department of Chemistry, Graduate School of Sciences, Kyushu University, Japan;
- 48. Fedorov D.G., Kitaura K., Li H., Jensen J.H., Gordon M.S. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO). J Comput Chem. 2006 Jun;27(8):976–85.
- 49. Ballesteros J.A., Weinstein H. Integrated Methods for the Construction of Three-Dimensional Models and Computational Probing of Structure-Function Relations in G Protein-Coupled Receptors. Methods Neurosci. 1995;25:366–428.
- 50. Kurek J., Kwaśniewska P., Myszkowski K., Cofta G. Antifungal, anticancer and docking studies of colchiceine complexes with monovalent metal cation salts. Chem Biol Drug Des. 2019;00:1–14.
- 51. Kurczab R., Śliwa P., Rataj K., Kafel R., Bojarski A.J. Salt Bridge in Ligand–Protein Complexes—Systematic Theoretical and Statistical Investigations. J Chem Inf Model. 2018;58(11):2224–38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4289869f-01b0-4268-99ff-d4440f1bd297