PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microplankton size structure induced by a warm-core eddy in the western Bay of Bengal : Role of Trichodesmium abundance

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mesoscale warm-core eddies are common in the Bay of Bengal (BoB), and this study in the western BoB during Pre-Southwest Monsoon (April 2015) presents how a prolonged warm-core core eddy could modify the microplankton biomass and size structure. To investigate this, field sampling and laboratory analyses were augmented with satellite data sets of sea surface temperature (SST), winds, mean sea level anomaly (MSLA), geostrophic currents and chlorophyll-a. High SST with positive MSLA (≥ 20 cm) and a clockwise circulation, represented the occurrence of a large warm-core eddy in the western BoB. Time series data evidenced that it was originated in the mid of March and persistent there till early June, which in turn caused a decrease in the surface nutrients and chlorophyll-a. The abundance and biomass of microplankton were negligible in the warm-core eddy region. FlowCAM data showed a significant decrease in the autotrophic microplankton parameters in the warm-core eddy (av. 13 ± 9 ind. L−1 and 0.1 ± 0.04 µgC L−1, respectively) as compared to the surrounding locations (av. 227 ± 143 ind. L−1 and 0.8 ± 0.5 µgC L−1, respectively). Low nutrients level in the warm core eddy region favoured high abundance of needle-shaped phytoplankton cells dominated by Trichodesmium cells. As a result, the size of micro-autotrophs in the warm-core eddy was larger (av. 91,760 ± 12,902 µm3 ind.−1) than its outside (av. 50,115 ± 21,578 µm3 ind.−1). This is a deviation from our belief that the oligotrophy decreases the phytoplankton size. We showed here that the above understanding might not be infallible in warm-core eddies in the northern Indian Ocean due to its inducing effect on the Trichodesmium abundance.
Czasopismo
Rocznik
Strony
283--300
Opis fizyczny
Bibliogr. 68 poz., rys., tab., wykr.
Twórcy
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Dona Paula, Goa, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
  • CSIR – National Institute of Oceanography, Regional Centre, Kochi, India
Bibliografia
  • [1] Agawin, N. S. R., Duarte, C. M., Agusti, S., 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production. Limnol. Oceanogr. 45, 591-600. https://doi.org/10.4319/lo.2000.45.3.0591.
  • [2] Alvarez, E., Lopez-Urrutia, A., Nogueira, E., 2012. Improvement of plankton biovolume estimates derived from image-based automatic sampling devices: application to FlowCAM. J. Plankton Res. 34, 454-469. https://doi.org/10.1093/plankt/fbs017.
  • [3] Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F., 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257-263. https://doi.org/10.3354/meps010257.
  • [4] Babu, M. T., Prasanna Kumar, S., Rao, D. P., 1991. A subsurface cyclonic eddy in the Bay of Bengal. J. Mar. Res. 49, 403-410. https://doi.org/10.1357/002224091784995846.
  • [5] Bernard, C., Rassoulzadegan, F., 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Mar. Ecol. Prog. Ser. Oldendorf 64, 147-155. https://www.jstor.org/stable/24844600.
  • [6] Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B., Carpenter, E. J., 1997. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221-1229. https://doi.org/10.1126/science.276.5316.1221.
  • [7] Chaigneau, A., Gizolme, A., Grados, C., 2008. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 79, 106-119. https://doi.org/10.1016/j.pocean.2008.10.013.
  • [8] Chassot, E., Bonhommeau, S., Dulvy, N. K., Melin, F., Watson, R., Gascuel, D., Le Pape, O., 2010. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495-505. https://doi.org/10.1111/j.1461-0248.2010.01443.x.
  • [9] Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., Samelson, R. M., 2011. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science 334, 328-332. https://doi.org/10.1126/science.1208897.
  • [10] Chen, G., Li, Y., Xie, Q., Wang, D., 2018. Origins of eddy kinetic energy in the Bay of Bengal. J. Geophys. Res. Oceans 123, 2097-2115. https://doi.org/10.1002/2017JC013455.
  • [11] Chen, G., Wang, D., Hou, Y., 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Cont. Shelf Res. 47, 178-185. https://doi.org/10.1016/j.csr.2012.07.011.
  • [12] Cheng, X., McCreary, J. P., Qiu, B., Qi, Y., Du, Y., Chen, X., 2018. Dynamics of eddy generation in the central Bay of Bengal. J. Geophys. Res. Oceans 123, 6861-6875. https://doi.org/10.1029/2018JC014100.
  • [13] Dandapat, S., Chakraborty, A., 2016. Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993-2014: statistical characteristics, variability and three-dimensional properties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 9, 5044-5054. https://doi.org/10.1109/JSTARS.2016.2585179.
  • [14] Durand, F., Shankar, D., Birol, F., Shenoi, S. S. C., 2009. Spatiotemporal structure of the East India Coastal Current from satellite altimetry. J. Geophys. Res. Oceans 114. https://doi.org/10.1029/2008JC004807.
  • [15] Friendly, M., 2002. Corrgrams: Exploratory displays for correlation matrices. Am. Stat. 56, 316-324. https://doi.org/10.1198/000313002533.
  • [16] Garrison, D. L., Gowing, M. M., Hughes, M. P., Campbell, L., Caron, D. A., Dennett, M. R., Shalapyonok, A., Olson, R. J., Landry, M. R., Brown, S. L., 2000. Microbial food web structure in the Arabian Sea: a US JGOFS study. Deep Sea Res. Part II Top. Stud. Oceanogr. 47, 1387-1422. https://doi.org/10.1016/S0967-0645(99)00148-4.
  • [17] Gauns, M., Madhupratap, M., Ramaiah, N., Jyothibabu, R., Fernandes, V., Paul, J. T., Kumar, S. P., 2005. Comparative accounts of biological productivity characteristics and estimates of carbon fluxes in the Arabian Sea and the Bay of Bengal. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 52, 2003-2017. https://doi.org/10.1016/j.dsr2.2005.05.009.
  • [18] Gomes, H. R., Goes, J. I., Saino, T., 2000. Influence of physical processes and freshwater discharge on the seasonality of phytoplankton regime in the Bay of Bengal. Cont. Shelf Res. 20, 313-330. https://doi.org/10.1016/S0278-4343(99)00072-2.
  • [19] Gopalakrishna, V. V., Murty, V. S. N., Sengupta, D., Shenoy, S., Araligidad, N., 2002. Upper ocean stratification and circulation in the northern Bay of Bengal during southwest monsoon of 1991. Cont. Shelf Res. 22, 791-802. https://doi.org/10.1016/S0278-4343(01)00084-X.
  • [20] Gordon, A. L., Shroyer, E., Murty, V. S. N., 2017. An Intrathermocline Eddy and a tropical cyclone in the Bay of Bengal. Sci. Rep. 7, 46218. https://doi.org/10.1038/srep46218.
  • [21] Grasshoff, K., Ehrhardt, M., Kremling, K., 1983. Methods of Seawater Analysis. Verlag Chemie, Weinheim, 89-224.
  • [22] Harrison, P. J., Zingone, A., Mickelson, M. J., Lehtinen, S., Ramaiah, N., Kraberg, A. C., Sun, J., McQuatters-Gollop, A., Jakobsen, H. H., 2015. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuar. Coast. Shelf Sci. 162, 130-142. https://doi.org/10.1016/j.ecss.2015.05.026.
  • [23] Hegde, S., Anil, A. C., Patil, J. S., Mitbavkar, S., Krishnamurthy, V., Gopalakrishna, V. V., 2008. Influence of environmental settings on the prevalence of Trichodesmium spp. in the Bay of Bengal. Mar. Ecol. Prog. Ser. 356, 93-101. https://doi.org/10.3354/meps07259.
  • [24] Jagadeesan, L., Kumar, G. S., Rao, D. N., Srinivas, T. N. R., 2019. Role of eddies in structuring the mesozooplankton composition in coastal waters of the western Bay of Bengal. Ecol. Indicators 105, 137-155. https://doi.org/10.1016/j.ecolind.2019.05.068.
  • [25] Jurgens, K., Wickham, S. A., Rothhaupt, K. O., Santer, B., 1996. Feeding rates of macro- and microzooplankton on heterotrophic nanoflagellates. Limnol. Oceanogr. 41, 1833-1839. https://doi.org/10.4319/lo.1996.41.8.1833.
  • [26] Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Karnan, C., Lallu, K. R., Vinayachandran, P. N., 2018. Response of phytoplankton to heavy cloud cover and turbidity in the northern Bay of. Bengal. Sci. Rep. 8, 1-15. https://doi.org/10.1038/s41598-018-29586-1.
  • [27] Jyothibabu, R., Karnan, C., Jagadeesan, L., Arunpandi, N., Pandiarajan, R. S., Muraleedharan, K. R., Balachandran, K. K., 2017. Trichodesmium blooms and warm-core ocean surface features in the Arabian Sea and the Bay of Bengal. Mar. Pollut. Bull. 121, 201-215. https://doi.org/10.1016/j.marpolbul.2017.06.002.
  • [28] Jyothibabu, R., Madhu, N. V., Maheswaran, P. A., Jayalakshmy, K. V., Nair, K. K. C., Achuthankutty, C. T., 2008. Seasonal variation of microzooplankton (20-200μm) and its possible implications on the vertical carbon flux in the western Bay of Bengal. Cont. Shelf Res. 28, 737-755. https://doi.org/10.1016/j.csr.2007.12.011.
  • [29] Jyothibabu, R., Madhu, N. V., Murukesh, N., Haridas, P., Nair, K. K. C., Venugopal, P., 2003. Intense blooms of Trichodesmium erythraeum (Cyanophyta) in the open waters along east coast of India. Indian J. Mar. Sci. 32, 165-167. http://hdl.handle.net/123456789/4262.
  • [30] Jyothibabu, R., Vinayachandran, P. N., Madhu, N. V., Robin, R. S., Karnan, C., Jagadeesan, L., Anjusha, A., 2015. Phytoplankton size structure in the southern Bay of Bengal modified by the Summer Monsoon Current and associated eddies: Implications on the vertical biogenic flux. J. Mar. Syst. 143, 98-119. https://doi.org/10.1016/j.jmarsys.2014.10.018.
  • [31] Jyothibabu, R., Win, N. N., Shenoy, D. M., Swe, U. T., Pratik, M., Thwin, S., Jagadeesan, L., 2014. Interplay of diverse environmental settings and their influence on the plankton community off Myanmar during the Spring Intermonsoon. J. Mar. Syst. 139, 446-459. https://doi.org/10.1016/j.jmarsys.2014.08.003.
  • [32] Jyothibabu, R., Karnan, C., Arunpandi, N., Krishnan, S. S., Balachandran, K. K., Sahu, K. C., 2021. Significantly dominant warm-core eddies: An ecological indicator of the basin-scale low biological production in the Bay of. Bengal. Ecol. Indicators 121, 107016. https://doi.org/10.1016/j.ecolind.2020.107016.
  • [33] Karnan, C., Jyothibabu, R., Arunpandi, N., Jagadeesan, L., Muraleedharan, K. R., Pratihari, A. K., Balachandran, K. K., Naqvi, S. W. A., 2017. Discriminating the biophysical impacts of coastal upwelling and mud banks along the southwest coast of India. J. Mar. Syst. 172, 24-42. https://doi.org/10.1016/j.jmarsys.2017.02.012.
  • [34] Landry, M. R., Brown, S. L., Campbell, L., Constantinou, J., Liu, H., 1998. Spatial patterns in phytoplankton growth and microzooplankton grazing in the Arabian Sea during monsoon forcing. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 45, 2353-2368. https://doi.org/10.1016/S0967-0645(98)00074-5.
  • [35] Li, C., Du, Y., Liang, F., Yi, J., Lakhan, V. C., 2015. A GIS-based method for depicting the characteristics of mesoscale eddies: a case study in the Northern South China Sea. Can. J. Earth Sci. 52, 746-756. https://doi.org/10.1139/cjes-2014-0177.
  • [36] Madhu, N. V., Jyothibabu, R., Maheswaran, P. A., Gerson, V. J., Gopalakrishnan, T. C., Nair, K. K. C., 2006. Lack of seasonality in phytoplankton standing stock (chlorophyll a) and production in the western Bay of Bengal. Cont. Shelf Res. 26, 1868-1883. https://doi.org/10.1016/j.csr.2006.06.004.
  • [37] Madhupratap, M., Gauns, M., Ramaiah, N., Kumar, S. P., Muraleedharan, P. M., De Sousa, S. N., Sardessai, S., Muraleedharan, U., 2003. Biogeochemistry of the Bay of Bengal: physical, chemical and primary productivity characteristics of the central and western Bay of Bengal during summer monsoon 2001. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 50, 881-896. https://doi.org/10.1016/S0967-0645(02)00611-2.
  • [38] Mahadevan, A., 2014. Ocean science: Eddy effects on biogeochemistry. Nature 506, 168-169. https://doi.org/10.1038/nature13048.
  • [39] Mahadevan, A., D’asaro, E., Lee, C., Perry, M. J., 2012. Eddy-driven stratification initiates North Atlantic spring phytoplankton blooms. Science 337, 54-58. https://science.sciencemag.org/content/337/6090/54.
  • [40] McGillicuddy, D. J., Anderson, L. A., Doney, S. C., Maltrud, M. E., 2003. Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1 resolution model of the North Atlantic. Glob. Biogeochem. Cy. 17. https://doi.org/10.1029/2002GB001987.
  • [41] McGillicuddy, D. J., Robinson, A. R., Siegel, D. A., Jannasch, H. W., Johnson, R., Dickey, T. D., McNeil, J., Michaels, A. F., Knap, A. H., 1998. Influence of mesoscale eddies on new production in the Sargasso Sea. Nature 394, 263-266. https://doi.org/10.1038/28367.
  • [42] Menden-Deuer, S., Lessard, E. J., 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569-579. https://doi.org/10.4319/lo.2000.45.3.0569.
  • [43] Mukhopadhyay, S. K., Biswas, H., De, T. K., Jana, T. K., 2006. Fluxes of nutrients from the tropical River Hooghly at the land-ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. J. Mar. Syst. 62, 9-21. https://doi.org/10.1016/j.jmarsys.2006.03.004.
  • [44] Murty, V. S. N., Gupta, G. V. M., Sarma, V. V., Rao, B. P., Jyothi, D., Shastri, P. N. M., Supraveena, Y., 2000. Effect of vertical stability and circulation on the depth of the chlorophyll maximum in the Bay of Bengal during May-June, 1996. Deep Sea Res. Pt. I Top. Stud. Oceanogr 47, 859-873. https://doi.org/10.1016/S0967-0637(99)00071-0.
  • [45] Patnaik, K., Maneesha, K., Sadhuram, Y., Prasad, K., Ramana Murty, T. V., Brahmananda Rao, V., 2014. East India Coastal Current induced eddies and their interaction with tropical storms over Bay of Bengal. J. Oper. Oceanogr. 7, 58-68. https://doi.org/10.1080/1755876X.2014.11020153.
  • [46] Patra, P. K., Kumar, M. D., Mahowald, N., Sarma, V., 2007. Atmospheric deposition and surface stratification as controls of contrasting chlorophyll abundance in the North Indian Ocean. J. Geophys. Res. Oceans 112. https://doi.org/10.1029/2006JC003885.
  • [47] Prasanna Kumar, S., Muraleedharan, P. M., Prasad, T. G., Gauns, M., Ramaiah, N., De Souza, S. N., Sardesai, S., Madhupratap, M., 2002. Why is the Bay of Bengal less productive during summer monsoon compared to the Arabian Sea? Geophys. Res. Lett. 29 (24), 88-81-88-84. https://doi.org/10.1029/2002GL016013.
  • [48] Prasanna Kumar, S., Narvekar, J., Nuncio, M., Kumar, A., Ramaiah, N., Sardessai, S., Gauns, M., Fernandes, V., Paul, J., 2010. Is the biological productivity in the Bay of Bengal light limited? Curr. Sci. 98, 1331-1339. https://www.jstor.org/stable/24107511.
  • [49] Prasanna Kumar, S., Nuncio, M., Narvekar, J., Kumar, A., Sardesai, S., De Souza, S. N., Gauns, M., Ramaiah, N., Madhupratap, M., 2004. Are eddies nature’s trigger to enhance biological productivity in the Bay of Bengal? Geophys. Res. Lett. 31, 1-5. https://doi.org/10.1029/2003GL019274.
  • [50] Prasanna Kumar, S., Nuncio, M., Ramaiah, N., Sardesai, S., Narvekar, J., Fernandes, V., Paul, J. T., 2007. Eddy-mediated biological productivity in the Bay of Bengal during fall and spring intermonsoons. Deep Sea Res. Pt. I Top. Stud. Oceanogr. 54, 1619-1640. https://doi.org/10.1016/j.dsr.2007.06.002.
  • [51] Rassoulzadegan, F., Laval-Peuto, M., Sheldon, R. W., 1988. Partitioning of the food ration of marine ciliates between pico- and nanoplankton. Hydrobiologia 159, 75-88. https://doi.org/10.1007/BF00007369.
  • [52] Raven, J. A., 1986. Physiological consequences of extremely small size for autotrophic organisms in the sea. Photosynthetic Picoplankton 214, 1-70.
  • [53] Rennie, S. J., Pattiaratchi, C. P., McCauley, R. D., 2007. Eddy formation through the interaction between the Leeuwin Current, Leeuwin Undercurrent and topography. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 54, 818-836. https://doi.org/10.1016/j.dsr2.2007.02.005.
  • [54] Sanilkumar, K. V., Kuruvilla, T. V., Jogendranath, D., Rao, R. R., 1997. Observations of the Western Boundary Current of the Bay of Bengal from a hydrographic survey during March 1993. Deep Sea Res. Pt. I Top. Stud. Oceanogr 44, 135-145. https://doi.org/10.1016/S0967-0637(96)00036-2.
  • [55] Sarma, V., Chopra, M., Rao, D. N., Priya, M. M. R., Rajula, G. R., Lakshmi, D. S. R., Rao, V. D., 2020. Role of eddies on controlling total and size-fractionated primary production in the Bay of Bengal. Cont. Shelf Res. 204, 104186. https://doi.org/10.1016/j.csr.2020.104186.
  • [56] Sarma, V., Jagadeesan, L., Dalabehera, H. B., Rao, D. N., Kumar, G. S., Durgadevi, D. S., Yadav, K., Behera, S., Priya, M. M. R., 2018. Role of eddies on intensity of oxygen minimum zone in the Bay of Bengal. Cont. Shelf Res. 168, 48-53. https://doi.org/10.1016/j.csr.2018.09.008.
  • [57] Shankar, D., McCreary, J. P., Han, W., Shetye, S. R., 1996. Dynamics of the East India Coastal Current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. J. Geophys. Res. Oceans 101, 13975-13991. https://doi.org/10.1029/96JC00559.
  • [58] Shenoi, S. S. C., Shankar, D., Shetye, S. R., 2002. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: Implications for the summer monsoon. J. Geophys. Res. Oceans 107, 5.1-5.14. https://doi.org/10.1029/2000JC000679.
  • [59] Shetye, S. R., Shenoi, S. S. C., Gouveia, A. D., Michael, G. S., Sundar, D., Nampoothiri, G., 1991. Wind-driven coastal upwelling along the western boundary of the Bay of Bengal during the southwest monsoon. Cont. Shelf Res. 11, 1397-1408. https://doi.org/10.1016/0278-4343(91)90042-5.
  • [60] Subramanian, V., 1993. Sediment load of Indian rivers. Curr. Sci. 64, 928-930. https://www.jstor.org/stable/24096213.
  • [61] Tilman, D., Kilham, S. S., Kilham, P., 1982. Phytoplankton community ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13, 349-372. https://doi.org/10.1146/annurev.es.13.110182.002025.
  • [62] Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q., Justic, D., Shaw, R. F., Cope, J., 1998. Fluctuating silicate: nitrate ratios and coastal plankton food webs. Proc. Natl. Acad. Sci. 95, 13048-13051. https://doi.org/10.1073/pnas.95.22.13048.
  • [63] Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M. G., Nelson, J. R., Sieracki, M. E., 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37, 1434-1446. https://doi.org/10.4319/lo.1992.37.7.1434.
  • [64] Vinayachandran, P. N., 2009. Impact of physical processes on chlorophyll distribution in the Bay of Bengal. Geophys. Monogr. Series 185, American Geophysical Union 71-86. https://doi.org/10.1029/2008GM000705.
  • [65] Vinayachandran, P. N., Chauhan, P., Mohan, M., Nayak, S., 2004. Biological response of the sea around Sri Lanka to summer monsoon. Geophys. Res. Lett. 31. https://doi.org/10.1029/2003GL018533.
  • [66] Wong, W. H., Rabalais, N. N., Turner, R. E., 2016. Size-dependent top-down control on phytoplankton growth by microzooplankton in eutrophic lakes. Hydrobiologia 763, 97-108. https://doi.org/10.1007/s10750-015-2365-3.
  • [67] Yentsch, C. S., Phinney, D. A., 1989. A bridge between ocean optics and microbial ecology. Limnol. Oceanogr. 34, 1694-1705. https://doi.org/10.4319/lo.1989.34.8.1694.
  • [68] Zhou, M.-j., Shen, Z.-l., Yu, R.-c., 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Cont. Shelf Res. 28, 1483-1489. https://doi.org/10.1016/j.csr.2007.02.009.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4281d682-e7dc-4de3-98ca-a3b6292202a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.