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ABSTRACT: This is a short tutorial on Volterra and Wiener series applications to modelling of nonlinear
systems and phenomena, and also a survey of the recent achievements in this area. In particular, we show here
how the philosophies standing behind each of the above theories differ from each other. On the other hand, we
discuss also mathematical relationships between Volterra and Wiener kernels and operators. Also, the problem
of a best approximation of large-scale nonlinear systems using Volterra operators in weighted Fock spaces is
described. Examples of applications considered are the following: Volterra series use in description of nonlinear
distortions in satellite systems and their equalization or compensation, exploiting Wiener kernels to modelling
of biological systems, the use of both Volterra and Wiener theories in description of ocean waves and in
magnetic resonance spectroscopy. Moreover, connections between Volterra series and neural network models,
and also input-output descriptions of quantum systems by Volterra series are discussed. Finally, we consider
application of Volterra series to solving some nonlinear problems occurring in hydrology, navigation, and

transportation.

1 INTRODUCTION

The objective of this paper is to show universality of
the Volterra and Wiener series in description of
nonlinear systems and phenomena, and in solving
numerous nonlinear problems occurring in diverse
engineering disciplines, ranging from electronics and
telecommunications to such ones as navigation and
transportation. This is possible because the Volterra
series is a natural extension of the convolution
integral description for linear systems to the nonlinear
case, but the Wiener series exploits the powerful
orthogonality principle applied to the Volterra series
to describe nonlinear systems with stochastic inputs.
It follows from the material presented in this paper
how powerful are these two mathematical tools in
consideration of nonlinear problems of engineering.

2 NONLINEAR SYSTEMS AND PHENOMENA

What are the nonlinear systems and phenomena ? The
simplest answer to this question is the following:
these are the ones that are not linear. In other words,
their description (model) cannot be formulated with
the use of one or a set of linear algebraic equations, or
linear operators, or ordinary or partial differential
equations, or combinations of them. One very useful
and, on the other hand, also fundamental criterion for
recognition whether a given system or phenomenon
behaves linearly is investigation of its response to an
amplified or attenuated sum of two external signals
(excitations) applied at its input. If this response is a
sum of two output signals (responses) received in the
case of applying them separately to the system, and
amplified or attenuated exactly in the same way as
were the input signals. Mathematically, using system
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description by operators, we can express the above as
follows

H(a-x,+f-x,)=a-H(x)+p-H(x,) 1)

where H denotes an operator describing the system.
This operator works on a set of admissible input
signals, producing responses at the system output. In
(1), x, and x, mean some input signals, members
of the above set. Usually in applications, they are
functions of time or position, or both of them.
Moreover, a and f are real numbers expressing
amplification or attenuation factors mentioned above.
Note further that the condition (1) assumes the same
form when H, x,,and Xx, are assumed to be vectors.
Then, a and § remain scalars.

In (1), we assumed the usage of ordinary algebra
with the common understanding of addition
operation “+” and multiplication operation “ - ”.
However, in this context, note there are some other
algebras in which the condition (1), with another
understanding of the aforementioned algebraic
operations, is fulfilled. Examples of such systems of
interest in the areas of signal processing and
networking are considered in (Oppenheim, A. V.
1965) and (Boudec, J.-Y. & Thiran P. 2004),
respectively. Obviously, then, these systems linear in
new algebras behave non-linearly in ordinary one.

In this paper, we do not study dynamics of
nonlinear systems or phenomena, which, by the way,
are very interesting because getting richer than those
of linear ones. Here, rather, we focus on searching for
descriptions of their steady states, having in mind the
input-output relations. For this purpose, the Volterra
series (Volterra V. 1959), named so in honor of its
founder an Italian mathematician Vito Volterra,
turned out to be very useful in solving many
nonlinear engineering problems. However, among
advantages, it has also some drawbacks. These are the
following: convergence problems occurring for
signals of higher amplitudes (similarly as in a Taylor
series) and problems with measuring its kernels. For
circumventing this, Norbert Wiener devised a related
mathematical tool by orthogonalization of
components of the Volterra series leading to an
expansion named after him a Wiener expansion
(Wiener N. 1942, Wiener N. 1958).

This paper is organized as follows. In sections 2
and 3, respectively, the Volterra series and Wiener
series are presented. The next section describes
shortly the problem of a best approximation of large-
scale nonlinear systems using Volterra operators in
weighted Fock spaces. Finally, the last section 5
presents a list of interesting applications of the
Volterra and Wiener theories in different engineering
disciplines.

3 VOLTERRA SERIES

3.1 Basics of Volterra series for time-invariant systems
with memory

Let us begin with consideration of a Volterra series of
continuous time for description of nonlinear time-
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invariant (stationary) systems with memory. To this
end, assume that an input-output behavior a
nonlinear system considered can be described by a
nonlinear operator; that is by such an operator H that
does not obey (1). Volterra shown that under some
conditions this operator can be expanded in a series of
the so-called Volterra operators as

0

o0 =H((0) =T (<) =2 (1), @

n=0

where x(t) and y(l) are the input and output
signal,

y(")(X(t)) =H" (X(t)) , we define the partial n-th

respectively. Moreover, by

order system’s response, where H =) (x(t )) means

the n-th order Volterra operator. Further, note that for
a fixed value of time t this operator is simply a
functional, called respectively the n-th order Volterra
functional.

The successive Volterra operators are given by the
following iterated integrals

YO0 =h", (3a)
yO(t) = T W (r) x(t—1)dr, (3b)

y(Z)(Z) = T T h(Z)(TpTz) x(t—7)x(t—1,)drdz, , (3¢)

—00 —00

0 0 o ©

Y (1) = j I .[.[ R (T,,7,,Tysens T,) X

—0—0 -0 —0

xx(t—7)x(t—7,)x(t—1;)..x(t —7,)drdr,dr,..dr,

, (3d)

where h'” is the system impulse response of the
zero-th order (in terms of currents or voltages, it is the
dc component in the expansion). Further, the function
h(")(rl,12,13,...,2'n), n=12,3,.., means the n-th
order nonlinear impulse response of a nonlinear
system considered. Note that for #=1 this is a standard

linear impulse response.

Looking at (3b), and then at (2) with the next
components in this expansion given by (3c), and
generally by (3d), we see that the Volterra series (2) is
an extension of the well-known convolution integral
for linear time-invariant (LTI) systems.

Obviously, for description of nonlinear systems
without memory, instead of a Volterra series, we use
a Taylor series.

Furthermore, it can be shown (Schetzen M. 1980)
that for the stability reasons of the Volterra series
description a sufficient condition is the following:

0 0 ® 0

_[ I I I |h(”)(71,12,r3,...,rn)

—00 —00 —00  —00

drdrydr,..dr, <o (4)



forn=1,2,3, ... Itis not a necessary one for 7 >2.
In his papers (Sandberg 1. W. 1985, Sandberg 1. W.
1990), Sandberg showed that in the above case for
nonlinear impulse responses that are physically
realizable, it has the form

sup J...J.h(”)(rl,..,z'n)dz'l..drn <o )
‘]l

Je¥ J,

where W means a set of all general n-vectors
[/, . . J,] having elements being finite sums of
bounded subintervals of the set (0,).

Moreover, for causal nonlinear systems, we have
(Schetzen M. 1981)

h(”)(rl,rz,..,rn)zo forany r,i=12,..,n,

and n=12,..... ©)

Finally, it can be shown (Borys A. 2007) that the
Volterra series converges if the following:

1
= @)

lgmwi/T ]E I ‘h(”)(rl,rz,..,rn) drdr,.dr,

I+l <

—00 —00  —00

holds, where ||x || means the norm of an input signal.

In derivation of (7) in (Borys A. 2007), it was assumed

x(t)| .

af
[x|= sup

—0<f<0

3.2 Volterra series for time-varying systems with memory

In practice, there occur also situations where we have
to with nonlinear physical systems of which
parameters change with time. Obviously, they cannot
be treated as stationary in this case. Then, when
describing them by a Volterra series, we must assume
that their nonlinear impulse responses depend upon
time. And this is a correct approach.

Concluding, we can say that the structure of
equations (2) and (3) remains unchanged in this case,

but we shall have H(X(I),t'), H" (x(t),t'), and
n=0,1,2,3,...,

upon an additional time variable ?'.

h(”)(rl,12,73,...,rn,t'), dependent

One very prominent example of such the systems
as sketched above are wireless communication
channels, whose characteristics vary with time and
position, and which are additionally, in most cases,
nonlinear ones, as for example satellite channels.

For more details regarding modelling of nonlinear
time-varying systems by Volterra or related series, see
papers of Sandberg (Sandberg I. W. 1982, Sandberg 1.
W. 1983) and cited therein.

3.3 Volterra series for discrete-time nonlinear systems
with memory

A variant of the Volterra series for discrete-time

(digital) nonlinear systems is named the discrete

Volterra series (Borys A. 2000). For nonlinear time-
invariant systems, it has the following form:

(k)= H{x(8) =21 (x(6) =" (0) @

n=0

with

YO k) =h® %)
GEDWACEISH (9b)
YU =YY G ik -i)xk-1) | (99)

)

W) = 3D K iy xtk =i x(k—i)x(k —iy) , (9)

iy =00 iy =00 i =0

©

YO (k) = i o DR s 6k i )eox(k=i), (9€)

hj=—0  [,=—0

where k means a discrete time and h(O) is the zero-th

order impulse response (constant component).

Moreover, h(l)(i) is the i-th sample of the system
first order impulse response (linear one). And further,
h(n)(il,iz,...,in ), n=2,..., mean the corresponding

samples of the multidimensional impulse responses
of orders greater than 1, related with the Volterra

operators of higher order terms (n 2 2) in equation

(3).

Conditions for stability of the Volterra operators in
the discrete Volterra series given by (8), for their
causality, and finally for the convergence of the whole
series (8) are analogous to those given respectively by
(4) or (5), by (6), and by (7), for the case of a
continuous time. They and details of their derivation
can be found, for example, in (Borys A. 2000) and
reference cited therein.

Similarly, extension of the discrete Volterra series
(8) for stationary systems of the discrete time to that
for non-stationary ones can be easily done in a similar
way as shortly described in subsection 2.2 for the
continuous time case.

4 WIENER SERIES
4.1 Reasons for searching for an orthogonal series
We can view the Volterra series as a mathematical

tool of general type for approximation of behavior of
nonlinear systems in steady state. That means that in
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this case, we do not adjust the above description to a
certain type (class) of input signals from a set of
admissible ones. The only limitation here is the
amplitude of these signals of which increase causes
convergence problems. Moreover, in the case of
description of a nonlinear system with memory by a
Volterra series, in almost all cases, the structure and
elements of this system are known. From this, it
possible to deduce the form of functions describing
system’s nonlinear impulses, or equivalently in the
multidimensional frequency domain, of its nonlinear
transfer functions of the corresponding orders
(Bussgang J. J. & Ehrman L. & Graham ]. W. 1974,
Bedrosian E. & Rice S. O.1971).

Another approximation philosophy stands behind
an expansion we call here the Wiener series (Schetzen
M. 1980). In opposite to the previous approach,
sketched in section 2, we adjust in this case the form
of the series components to a specific class of input
signals used in a given application - to achieve better
convergence properties and adjustment to measured
data. In other words, having records of data
measured at input and output of a given system and
knowing nothing about its internal structure, we
approximate behavior of this system so good as only
it is possible for a class of input signals chosen.

Basic ideas of the above two schemes of
approximation can be illustrated by comparison of
approximation of a given function of, say one variable
t, on an interval f, <7</, (obviously having no
memory) by polynomials. We have two choices: 1. we
can expand this function in a Taylor series and
truncate it at the n-th component (n depending upon a
required accuracy) or 2. we can expand the
considered function in a series of the first m
orthogonal polynomials, as for example, Legendre,
Hermite or Chebyshev polynomials (m depending, as
before, upon a required accuracy). And now note that
the first approach (1.) corresponds with the
approximation of a nonlinear operators (systems)
with memory by a Volterra series, but the second (2.)
with a Wiener series. As we shall see in the next
subsection, the Wiener series uses Hermite
polynomials for orthogonalization of Volterra series
components.

4.2 Notion of Wiener G-functionals

To define the so-called Wiener G-functionals (G-
operators), we need first to explain the notion of
nonhomogeneous Volterra operators. And to this end,
note that a Volterra operator of the n-th order is

homogeneous if the following: H ) (c~x(t )) =
=c"-H" (x(z‘)) holds with ¢ meaning a constant. If

this does not hold, a given Volterra operator is a
nonhomogeneous one.

Using similar nomenclature as in (Schetzen M.
1981), we define a nonhomoge?ﬁous Volterra
operator of the first degree (order), [] , as
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g [h(l),h(o)l;x(t)] =H" (x(t)) Yy G
. ) (10)
= j WO (r) x(t - 7)dr + ™

where the double superscript (0)1 at 7" means that
the zero-th order (the words “degree” and “order” are
used interchangeably in this paper) homogeneous
Volterra operator is a component of the first order
nonhomogeneous Voltelf{)a operator g [] We see
that the operator g'/|-| is a sum of two
components, of a hom? eneous Volterra operator of
the first order and of A (a constant component).

Similarly, the nonhomogeneous Volterra operator
of the second order will have the form

g? [ ) 02 h(o)z;x(,)} e (x(1))+
- (11)
A () < [ 30-1)

—00 —0

x(t—1,)drdr, + [ K (0) x(t—)dr + 5"

where now g(z) [] is a sum of three homogeneous

HY (x(t)) and H"? (x(t))

Volterra operators:

being, respectively, second and first order
convolutions, and H*? (x(t)) = p°” being a
constant.
So, in generally, we can write
g R WO (1) = HY) (x(1))+
(12)

+ ZI: HY" (x(2))+n"

i=n—1

For orthogonalization of the Volterra series,
Wiener chose (Schetzen M. 1981) the Hermite
polynomials; they have, after normalization, the
following form:

(13)

where a subscript by H denotes degree (order) of a
given polynomial. A recursion formula describing
these polynomials is given by

1

ovn+1

d

(xH,, (-0 L, (x)j.

X

(14)

Hn+1(x) =

As the orthonormal polynomials, they satisfy the
following equality:



F 1 form=n

H H ? = 15
[ 511,510 s = e as)
with w(x meaning a weighting function. In the

case of (15), that is of the Hermite polynomials, the
weighting function w(x) is such that

2 1 X2 (16)
w (x)=———exp| ——
where o is a constant. In the means of

approximation by the Wiener G-functionals, x in
equations (13 — 16) stands for a white Gaussian time
function applied as the input signal at the system’s
input. The parameter ¢ in (16) plays a role of a time
variance of the input signal, that is

(17a)

o’ = Av([x(t)}z) = limLIT(x(t))zdt ,

where the operation of calculation of the time average
is denoted by the symbol Av. Moreover, it was
assumed in (17a) that the signal average, Av x(t )3
is equal to zero. That is

7

Av(x(t))znmlfx(t)dt:o :

T-o QT r

(17b)

The property of Gaussianity of the system input
signal means that its amplitude distribution in time is
described by the bell-shaped Gaussian function (16).
More, the property of being “white” means that its

autocorrelation function, let denote it R (T) , is
equal to the Dirac impulse O (2') multiplied by a

constant, say N, , thatis

T

R (7)=lim—— [ x(p(ee)de=Ng (o)

(18a)

Then, the Fourier transform of Rxx (T) meaning
the so-called power density spectrum, let denote it
G, ( ]a)) , is constant. That is

G.(jo)=N, , (18b)

where variable @ means the angular frequency.

For this class of input signals, being white and
Gaussian, Wiener coined his G-functionals. They are
defined as a set of nonhomogeneous Volterra

functionals g(")[k("),k(nfl)n,..,k(o)";x(l‘)} for which

the following orthogonality principle

Av (H('") (x(t)) g™ [k("),..,k(o)";x(t)]) =0 form<n (19)

holds (Schetzen M. 1981, Rugh W. ]J. 1981), where, as
mentioned before, x(t) is assumed to be Gaussian
and having the autoc rrelation function given by
(18a). Moreover, H "(x(¢)) in (19) means any m-
th order homogeneous Volterra operator. In what
follows, we wi(ll) denote the nonhomogeneous Volterra
functionals g""'[-] satisfying (19) by a capital letter
G. For this reason, they will be called Wiener G-
functionals (for a given t) or Wiener G-operators (for
all values of t, that is considered as a function of f).

Assuming that the first Wiener G-operator, G ,
equals a constant and applying condition (19) for
successive n=1,2,3,...., we get a set of G-operators.
The procedure is described in more detail in (Schetzen
M. 1980, Rugh W. J. 1981). Here, we present for
illustration the first four Wiener G-operators. They
have the following form:

e [k(o);x(t)] =k, (20a)
G [k(l);x(t)] = I KOty x(t—1)dr (20b)
G |:k(2);x(l‘):| = _[ .[ k(Z)(TUTz) x(t—17)-

—0—® , (20¢)
x(t—7,)drde,— N, [ k?(z,7) dr
GOk sx (1) | = KO (x (1) + K (x(r)) =
- j .[ Ik(3)(71a72a73) x(t—7)x(1—1,)- ’ (20d)
x(t—z)drdrde, + [ K(z)x(t—7)dr,
where k"°(z,) in (20d) is given by
k2 (7,)=-3N, I k9(z,,1,,1,)dr, - (20e)

Note that in equations (20) in G" [k(");x(t)]

n=0,1,2,3, only the leading component K" s
shown in the square brackets, for shortening the

notation. The functions k") are called the Wiener
kernels (Schetzen M. 1981). Furthermore, observe that
the numerical coefficients accompanying the
components on the right hand sides of equations (20)
are the same as those by the consecutive terms of
Hermite polynomials (13). This is not fortuitous; for
more details see, for example, (Schetzen M. 1980).
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Using relation (19), it can be shown that the
following orthogonality relationship between the
Wiener G-operators

AV(GW [ (1) |- G [ ks (e )])

holds forall m#n.

0 (1)

4.3 Wiener description of a nonlinear system

Using the properties of his G-operators, which were
presented in the previous subsection, Wiener showed
that the response y t) of a nonlinear system to a
white Gaussian signa x(t) can be described by an
orthogonal series of the form

(22)

The expansion given by (22) was named, after his
founder, the Wiener series.

Means of modelling of nonlinear systems driven
by input signal being realizations of stochastic white
Gaussian processes is illustrated in Fig. 1.

G I:k(n);x(t):l

output signal

y(t)

input signal .
x(t) G()I:k();x(l)jl

o0

GO [k x(1)]

Figure 1. Nonlinear system modelling with the use of the
Wiener operators and input signals being realizations of the
white Gaussian processes.

Let a true output signal at the nonlinear system
output be z(t), and its approximate by the truncated
Wiener series (given by (22)) with the first p

components (including G(O)) Y, (t) . Then, the
mean-square value of the error e, (t ) between the

system’s output signal z(f) and y, (t) can be
expressed in the following way (Schetzen M. 1981):

Av([ep (f)]z) = Av([z(t)]2) —AV([yp (t)]z) _ (
B (G

n=1

)dr -dt,

In (23), 0'22=Av([z(t)12)—(/lv[z(t)])2 is the

variance of the true system’s response.
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Obviously, in accordance with the rules of
orthogonal approximation, the approximation error

Av([ep (t)]z) decreases with the increase of the
number of elements used, that is with the increase of
the upper index p in the sum symbol in (23). Its
smallest value is given by

Av ([ew (t)]z) = ]1)1_1}010 Av ([ep (t)]z) .

(24)

4.4 Orthogonal expansion of the Wiener kernels in the
Wiener series

Observe from (23) that the Wiener kernels satisfy the
following equality

TT( (71507, )dT1 dr, <o ,n=1,2,3 (25)
0

The condition given by (25) is sufficient for
expanding the Wiener kernels in a set of orthogonal
functions. However, the orthonormal Laguerre
functions are usually chosen in the literature because
they can be easily physically realized, as all-pass
filters. For example, see (Schetzen M. 1980).

with the
has

The expansion of the Wiener kernel K"
use of Laguerre functions [ (¢), m=0,1,2,...,

the following form (Schetzen M. 1981):

0 0

k" (71007,) = Z . Z Ayl (7,) 1, (z,) » (20
m=0 my=0
where the coefficients a,, ,,  are given by
a = Ij A (2'1,..,2'” )lm| (rl) L, (z'n)dz'1 -dr, - (27)
0 0

In particular, the Laguerre expansion of the first
order Wiener kernel k(l), restricted to the first p+1

components, assumes the form

(28a)

(28b)

4.5 The Wiener model

Using the results of derivations presented in the
previous subsections 3.1 — 3.4, it can be further shown
that a very general model for description of nonlinear



systems follows from these outcomes. This model or
its variants were used in a vast number of research
papers dealing with the nonlinear systems. It is called
the Wiener model (Schetzen M. 1981) and its structure
is presented in Fig. 2.

nonlinear

x(t) h, (t) |

system
without
memory

Figure 2. The Wiener model of a nonlinear system.

In Fig. 2, the first part of the model consisting of N
blocks of linear subsystems having (linear) impulse

responses denoted £, (7),...,1, (¢) is a single-input

multi-output system. Elements of the above set of
impulse responses are orthonormal. The next part of
the model is a multi-input (N inputs) multi-output (M
outputs) nonlinear system without memory, using
multidimensional Hermite functions. And finally, the
last part of the model in Fig. 2, consists of a set of M

multipliers, «,...,a and a

1o Oy summing unit.

Furthermore, note that all the memory of a given
nonlinear system that is modelled according to the
structure of Fig. 2 is concentrated solely in its first
(linear) part.

4.6 Remarks on stochastic functional Fourier series,
Cameron-Martin type expansion and some other
related ones

Obviously, the scheme of modelling of nonlinear
systems excited by signals being realizations of white
Gaussian stochastic processes can be extended for
other ones, for example Poisson processes
(Marmarelis V. Z. & Berger T.W. 2005).

It is interesting that formulation of a stochastic
version of the Fourier series is possible on the basis
orthogonal functionals in a random environment (for
random processes). This was done by Yasui in (Yasui
S. 1979). In this paper, the relationships existing
between the Wieneer kernels, Volterra kernels
(nonlinear impulse responses), and coefficients in the
so-called Cameron-Martin functional expansion
(Cameron R. H. & Martin W. T. 1947) are found and
discussed very thoroughly.

It is also worth noting here an algebraic approach
to nonlinear functional expansions (Fliess M. &
Lamnabhi M. & Lamnabhi-Lagarrigue F. 1983)
leading to the expansions of the Volterra series type.
This method relies upon the use of a formal power
series in several non-commutative variables and of
iterated integrals. For more details, see (Fliess M. &
Lamnabhi M. & Lamnabhi-Lagarrigue F. 1983).

5 BEST APPROXIMATION OF LARGE-SCALE
NONLINEAR SYSTEMS USING VOLTERRA
OPERATORS IN WEIGHTED FOCK SPACES

One of the important problems with the Volterra
series (as well as with the Wiener series) applications
is that the number of calculations to be performed
grows exponentially with the order (degree) of
system’s nonlinearities, which have to be taken into
account to achieve good enough accuracy of the
approximation. The number of the needed
calculations grows also in a similar way with the
increase of system input and/or output
dimensionalities. The above facts cause that the
Volterra series applications are limited to rather low-
dimensional systems and/or such ones with mild
nonlinearities.

As shown in (De Figueiredo R. J. P. & Dwyer III T.
A. W. 1980), the above problem can be largely
circumvented by reformulating the Volterra series
with the use of a special mathematical tool called a
reproducing kernel Hilbert space (RKHS). In the
above paper, this tool was used in an appropriately
chosen weighted Fock space. For more details, see (De
Figueiredo R. J. P. & Dwyer III T. A. W. 1980) and
references cited therein.

6 SOME INTERESTING APPLICATIONS OF THE
VOLTERRA AND WIENER THEORIES

In this final section, because of lack of space, we
present only examples of some interesting
applications of the Volterra and Wiener theories in
telecommunications, biological sciences, oceanology,
and physics.

Telecommunications. Volterra series and an
orthogonal series derived from it have been used for
description of nonlinear distortions occurring in
satellite communication channels. On this basis, the
corresponding schemes for equalization of these
nonlinear channels and compensation of distortions
have been worked out in (Benedetto S. & Biglieri E. &
Daffara R. 1979, Gutierrez A. & Ryan W. 2000).
Another examples of applications for solving
nonlinear problems in radio communication are
presented in (Bedrosian E. & Rice S. O. 1971,
Bussgang J. J. & Ehrman L. & Graham J. W. 1974).

Biological sciences. Examples of applications of the
Wiener theory in this area can be found in articles
(Dijk P. & Wit H. P. & Segenhout ]. M. 1994,
Marmarelis P. Z. & Naka K.-I. 1972, Marmarelis V.
Z. & Zhao, Sclabassi R. J. & Risch H. A. & Hinman C.
L. & Kroin J. S. & Enns N. F. & Namerow N. S. 1977).

Oceanology. Nonlinear ocean wave modelling with
the use of the Volterra and other mathematical tools is
described in (Maltz F. 2009).

Physics. The use of the Volterra and Wiener series
in magnetic resonance spectroscopy has been
exploited in (Bliimich B 1985). Very interesting and
promising is the application of the Volterra series to
description of objects and phenomena in quantum
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physics (Zhang J. & Liu Y. &, Wu R.-B. & Jacobs K. &
Ozdemir S. K. & Lan Y. & Tarn T.-J. & Nori F. 2014).

Hydrology. Interesting applications of the Volterra
series are presented, for example, in (Napidrkowski J.
J. & Strupczewski W.G.) and papers cited therein.

Navigation. Application of the Volterra filters in
solving nonlinear problems of navigation can be
found, for example, in (Park S. H. 2007).

Transportation. Nonlinear problems of transport-
tation are tackled with the use of Wiener measure in
(Feyel D. & A. S. Ustiinel 2004).

7 CONCLUSIONS

First, a concise introduction to the Volterra and
Wiener series has been made in this paper. Second, a
general model of nonlinear systems, called the Wiener
model after his founder, has been presented. Also, a
model for description of very large nonlinear systems,
based on the Volterra series and the so-called
reproducing kernel Hilbert space, has been described.

Finally, numerous applications of the above
mathematical tools in such areas as tele-
communications, biological sciences, oceanology,

physics, hydrology, navigation, and transportation
have been enumerated. However, because a lack of
space, they are not presented here in more detail, with
some needed illustrations. This will be done during
an oral presentation at the conference. Nevertheless,
we hope, all the examples given witness strongly
great usefulness of the Volterra and Wiener theories
in engineering.
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