PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Status and prospects for combined GPS LOD and VLBI UT1 measurements

Autorzy
Identyfikatory
Warianty tytułu
Konferencja
Proceedings of the IERS Workshop on EOP Combination and Prediction, Warsaw, 19-21 October 2009
Języki publikacji
EN
Abstrakty
EN
A Kalman filter was developed to combine VLBI estimates of UT1-TAI with biased length of day (LOD) estimates from GPS. The VLBI results are the analyses of the NASA Goddard Space Flight Center group from 24-hr multi-station observing sessions several times per week and the nearly daily 1-hr single-baseline sessions. Daily GPS LOD estimates from the International GNSS Service (IGS) are combined with the VLBI UT1-TAI by modeling the natural excitation of LOD as the integral of a white noise process (i.e., as a random walk) and the UT1 variations as the integration of LOD, similar to the method described by Morabito et al. (1988). To account for GPS technique errors, which express themselves mostly as temporally correlated biases in the LOD measurements, a Gauss-Markov model has been added to assimilate the IGS data, together with a fortnightly sinusoidal term to capture errors in the IGS treatments of tidal effects. Evaluated against independent atmospheric and oceanic axial angular momentum (AAM + OAM) excitations and compared to other UT1/LOD combinations, ours performs best overall in terms of lowest RMS residual and highest correlation with (AAM + OAM) over sliding intervals down to 3 d. The IERS 05C04 and Bulletin A combinations show strong high-frequency smoothing and other problems. Until modified, the JPL SPACE series suffered in the high frequencies from not including any GPS-based LODs. We find, surprisingly, that further improvements are possible in the Kalman filter combination by selective rejection of some VLBI data. The best combined results are obtained by excluding all the 1-hr single-baseline UT1 data as well as those 24-hr UT1 measurements with formal errors greater than 5 μs (about 18% of the multi-baseline sessions). A rescaling of the VLBI formal errors, rather than rejection, was not an effective strategy. These results suggest that the UT1 errors of the 1-hr and weaker 24-hr VLBI sessions are non-Gaussian and more heterogeneous than expected, possibly due to the diversity of observing geometries used, other neglected systematic effects, or to the much shorter observational averaging interval of the single-baseline sessions. UT1 prediction services could benefit from better handling of VLBI inputs together with proper assimilation of IGS LOD products, including using the Ultra-rapid series that is updated four times daily with 15 hr delay.
Słowa kluczowe
EN
Rocznik
Strony
57--73
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • U.S. Naval Research Laboratory, Washington, DC, USA
autor
  • Geodetic Survey Division, Natural Resources Canada, Ottawa, Kanada
autor
  • NOAA/National Geodetic Survey, Silver Spring, Maryland, USA
Bibliografia
  • Altamimi Z., Collilieux X., Legrand J., Garayt B., and Boucher C. (2007). ITRF2005: A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters, J. Geophys. Res., doi: 10.1029/2007JB004949, 112, B09401.
  • Böhm J., Hobiger T., Ichikawa R., Kondo T., Koyama Y., Pany A., Schuh H., and Teke K. (2010). Asymmetric tropospheric delays from numerical weather models for UT1 determination from VLBI Intensive sessions on the baseline Wettzell-Tsukuba, J. Geod., doi: 10.1007/s00190-010-0370-x, in press.
  • Eanes R.J. and Watkins M.M. (1994). Earth orientation and site coordinates from the Center for Space Research solution, in IERS Technical Note, 17, Observatoire de Paris, pp. L7-L11.
  • Eubanks T.M. (1993). Variations in the orientation of the Earth, in Contributions of Space Geodesy in Geodynamics: Crustal Dynamics, Smith D.E. and Turcotte D.L. (eds.), AGU Geodynamics Series, 24, pp. 1-54.
  • Griffiths J. and Ray J.R. (2009). On the precision and accuracy of IGS orbits, J. Geod., doi: 10.1007/s00190-008-0237-6, 83, 277-287.
  • Gross R.S. (2006). Combinations of Earth orientation measurements: SPACE2005, COMB2005, and POLE2005, JPL Pub. 06-3, Jet Propulsion Lab., Pasadena, Calif., available at ftp://euler.jpl.nasa.gov/keof/combinations/2005/.
  • Gross R.S. (2007). Combinations of Earth orientation measurements: SPACE2006, COMB2006, and POLE2006, JPL Pub. 07-5, Jet Propulsion Lab., Pasadena, Calif., available at ftp://euler.jpl.nasa.gov/keof/combinations/2006/.
  • Gross R.S., Eubanks T.M., Steppe J.A., Freedman A.P., Dickey J.O., and Runge T.F. (1998). A Kalman-filter-based approach to combining independent Earth-orientation series, J. Geod., doi: 10.1007/s001900050162, 72(4), 215-235.
  • Gross R.S., Fukumori I., and Menemenlis D. (2005). Atmospheric and oceanic excitation of decadal-scale Earth orientation variations, J. Geophys. Res., doi: 10.1029/2004JB003565, 110, B09405.
  • Hide R. and Dickey J.O. (1991). Earth’s variable rotation, Science, 253, 629-637.
  • Kantha L.H., Stewart J.S., and Desai S.D. (1998). Long-period lunar fortnightly and monthly ocean tides, J. Geophys. Res., 103, 12639-12647.
  • Kouba J. (2002). Sub-daily Earth rotation parameters and the International GPS Service orbit/clock solution products, Stud. Geophys. Geod., 46, 9-25.
  • Kouba J. (2003). Testing of the IERS2003 sub-daily Earth rotation parameter model, Stud. Geophys. Geod., 47, 725-739.
  • Kouba J. and Vondrák J. (2005). Comparison of length of day with oceanic and atmospheric angular momentum series, J. Geod., doi: 10.1007/s00190-005-0467-9, 79(4-5), 256-268.
  • Luzum B.J., Ray J.R., Carter M.S., and Josties J. (2001), Recent improvements to IERS Bulletin A combination and prediction, GPS Solutions, 4(3), 34-40.
  • Malkin Z. (2009). On comparison of the Earth orientation parameters obtained from different VLBI networks and observing programs, J. Geod., doi: 10.1007/s00190-008-0265-2, 83, 547-556.
  • McCarthy D.D. and Petit G., eds. (2004). IERS Conventions (2003), IERS Technical Note, 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, ISBN 3-89888- 884-3.
  • Mireault Y., Kouba J., and Ray J. (1999), IGS Earth rotation parameters, GPS Solutions, 3(1), 59-72.
  • Morabito D.D, Eubanks T.M., and Steppe J.A. (1988). Kalman filtering of Earth orientation changes, in The Earth’s Rotation and Reference Frames for Geodesy and Geodynamics, Babcock A.K. and Wilkins G.A. (eds.), Kluwer Acad., Norwell, Mass., pp. 257-267.
  • Ray J.R. (1996). Measurements of length of day using the Global Positioning System, J. Geophys. Res., 101(B9), 20141-20149.
  • Ray J.R. (2009). An optimal, consistent approach for combination for UT1 and LOD, in Geodetic Reference Frames, H. Drewes (ed.), IAG Symposia series, vol. 134, SpringerVerlag, doi: 10.1007/978-3-642-00860-3_37, pp. 239-243.
  • Ray J.R., Carter W.E., and Robertson D.S. (1995). Assessment of the accuracy of daily UT1 determinations by very long baseline interferometry, J. Geophys. Res., 100(B5), 8193-8200.
  • Ray J., Kouba J., and Altamimi Z. (2005). Is there utility in rigorous combinations of VLBI and GPS EOPs?, J. Geod., doi: 10.1007/s00190-005-0007-7, 79(9), 505-511.
  • Robertson D.S., Carter W.E., Campbell J., and Schuh H. (1985). Daily Earth rotation determinations from IRIS very long baseline interferometry, Nature, 316, 424-427.
  • Salstein D.A. and Rosen R.D. (1997). Global momentum and energy signals from reanalysis systems, in 7th Conf. on Climate Variations, American Meteorological Society, Boston, MA, pp. 344-348.
  • Senior K., Kouba J., and Ray J. (2008a). A Kalman filter to combine VLBI UT1 and GPS LOD estimates, Geophysical Research Abstracts, 10, EGU2008-A-07532.
  • Senior K., Kouba J., and Ray J. (2008b). A Kalman filter for improved multi-technique estimates of UT1 variations, Eos Trans. AGU, 89(53), Fall Meeting Suppl., Abstract G32A-07.
  • Thaller D., Kruegel M., Rothacher M., Tesmer V., Schmid R., and Angermann D. (2007). Combined Earth orientation parameters based on homogeneous and continuous VLBI and GPS data, J. Geod., doi: 10.1007/s00190-006-0115-z, 81(6-8), 529-541.
  • Vondrák J. (1969). A contribution to the problem of smoothing observational data, Bull. Astron. Inst. Czech., 20, 349-355.
  • Vondrák J. (1977). Problem of smoothing observational data II, Bull. Astron. Inst. Czech., 28, 84-89.
  • Vondrák J. and Cepek A. (2000). Combined smoothing method and its use in combining Earth orientation parameters measured by space techniques, Astron. Astrophys. Suppl. Ser., 147, 347-359.
  • Vondrák J. and Ron C. (2005). Combining GPS and VLBI measurements of celestial motion of the Earth’s spin axis and Universal time, Acta Geodynamica et Geomaterialia, 2(3), 87-94.
  • Yoder C.F., Williams J.G., and Parke M.E. (1981). Tidal variations of Earth rotation, J. Geophys. Res., 86(B2), 881-891.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-427e71f9-23e5-4472-9873-020e474694a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.