Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper we show that the weighted double skeleton of a finite distributive lattice is a suffcient structure to characterize the lattice numerically. We prove some combinatorial formulas for the number of all elements of a finite distributive lattice with the given weighted double skeleton, all its elements with exactly k lower covers and all its covering pairs. Introducing some simple examples, we show how the formulas work.
Rocznik
Tom
Strony
43--48
Opis fizyczny
Bibliogr. 7 poz., rys., tab.
Twórcy
autor
- Institute of Mathematics and Computer Science Jan Długosz University of Częstochowa al. Armii Krajowej 13/15, 42-200 Częstochowa, Poland
Bibliografia
- [1] M. Aigner. Combinatorial Theory. Springer, Berlin, 1979.
- [2] H.J. Bandelt. Tolerance relations of lattices. Bull. Austral. Math. Soc., 23, 367-381, 1981.
- [3] B. Ganter, R. Wille. Formal Concept Analysis. Mathematical Foundations. Springer, 1999.
- [4] J. Grygiel. Some properties of H-irreducible lattices. Bull. Sect. Logic, 33 (2), 71-80, 2004.
- [5] J. Grygiel. Weighted double skeletons. Bull. Sect. Logic, 35 (1), 37-48, 2006.
- [6] Ch. Herrmann. S-verklebte Summen von Verbanden. Math. Z., 130, 255-274, 1973.
- [7] K. Reuter. Counting formulas for glued lattices. Order, 1, 265-276, 1985.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-427b892d-6242-4ffd-a0b7-ea44eee2a6da