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Abstract. In the paper we show that the weighted double skeleton of a �nite dis-

tributive lattice is a su�cient structure to characterize the lattice numerically. We

prove some combinatorial formulas for the number of all elements of a �nite distribu-

tive lattice with the given weighted double skeleton, all its elements with exactly k

lower covers and all its covering pairs. Introducing some simple examples, we show

how the formulas work.

1. Introduction

In the case of big �nite lattices it is often impossible to represent them by

diagrams. To simplify their description it is useful to introduce the method

given by Herrmann in [6], called gluing of lattices, which in fact is a way

of building a lattice by means of smaller structures. It is particularly useful

in the case of a �nite distributive lattice, which turns out to be glued from

its maximal Boolean intervals according to some factor structure (being also

a lattice) called its skeleton.

However, knowing only the skeleton and Boolean lattices � bricks from

which an original distributive lattice D is built � does not mean that we know

how the lattice D looks like. To make the description complete we introduced

in [5] the notion of weighted double skeleton.

Here we are going to show how to compute some combinatorial values of

a �nite distributive lattice, whose weighted double skeleton is known.

Let us start with introducing some basic notions. It was proved in [2] that

maximal Boolean intervals which constitute a �nite distributive lattice are in

fact blocks of the smallest glued tolerance relation of the lattice.



44 Joanna Grygiel

A tolerance relation on a lattice L is a re�exive and symmetric binary rela-

tion on L compatible with lattice operations. A block of a tolerance relation

Θ is a maximal subset B of L such that every pair of elements of B belongs to

Θ. In the case of �nite lattices the blocks of any tolerance relation Θ on a lat-

tice L are intervals and by introducing an order of blocks compatible with the

order of their largest elements we get a lattice called the factor lattice L/Θ.
It is clear that a congruence relation is a special case of a tolerance relation.

However, while dealing with congruences we get a partition of the underlying

set, here we are rather concerned with overlapping subsets determined by so

called glued tolerances. A tolerance relation on L is called glued if its transitive

closure is the total relation on L. It can be proved (see [3]) that blocks of the

smallest glued tolerance relation Σ(L) are generated by the covering relation

on L. The factor lattice L/ Σ(L) is called the skeleton of L, and it will be

denoted by S(L).
Let L be a �nite lattice and denote by Jk(L) (resp. Mk(L)) the set of

elements of L with exactly k lower (resp. upper) covers, i.e.

Jk(L) = {a ∈ L; |{b ∈ L; b ≺ a}| = k},
Mk(L) = {a ∈ L; |{b ∈ L; a ≺ b}| = k}.

It is clear that the zero of L is the only element of J0(L) and J1(L) is the set
of all join-irreducible elements of L (except the zero).

Let Cov(L) denote the set of all covering pairs in L, i.e.

Cov(L) = {(x, y) : x ≺ y, x, y ∈ L}.

In [7], using the Möbius function, Reuter proved a formula counting the

numbers of elements in Jk(L) (Mk(L)) for any �nite lattice with a given glued

tolerance relation. Let us recall that the Möbius function µP of a poset P can

be given by the recursive formula (see e.g. [1]):{
µP (x, x) = 1 for x ∈ P,
µP (x, y) = −Σx≤z<yµP (x, z) for x < z; x, z ∈ P.

Theorem 1. ([7]) Let Θ be a glued tolerance relation on a �nite lattice L with

the factor lattice P and blocks {Lp}p∈P . Then for any k ≥ 0

|Jk(L)| =
∑
r≤s

µP (r, s)|Jk(Lr ∩ Ls)|;

|Mk(L)| =
∑
r≤s

µP (r, s)|Mk(Lr ∩ Ls)|.
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Moreover,

|Cov(L)| =
∑
r≤s

µP (r, s)|Cov(Lr ∩ Ls)|.

As we see, to count elements of a lattice L we have to know not only the

factor lattice P (the skeleton, for example) and blocks of the glued tolerance

relation but intersections of all blocks, as well. All the information in the case

of �nite distributive lattices can be provided by the weighted double skeleton

of the lattice, the notion of which we introduced in [5].

2. The main result

Let D be a �nite distributive lattice with skeleton S. The blocks of the skeleton
tolerance Θ are the maximal Boolean intervals of D, we can denote them by

Bx = [0x, 1x] for x ∈ S. One can show that the subset {0x}x∈S with the

order inherited from D is a lattice isomorphic to the skeleton S (although the

meet operations of these lattices may not agree). The same can be said about

the subset {1x}x∈S (now, the operations of join in D and the lattice of units

can be di�erent). Thus, these subsets need not form sublattices of D. Let us
consider the partially ordered subset Sd = {0x}x∈S ∪ {1x}x∈S of D. We shall

call it the double skeleton of D.
For simplicity we will write x instead of 0x and x′ instead of 1x for

x ∈ S. Thus, we can regard the double skeleton as a digraph, whose ver-

tices are labeled by elements of some set S and its copy S′ and whose arcs

are determined just by the covering relation in the poset Sd. Let us observe

that S and S′ are not necessarily disjoint, hence some vertices can have two

labels. It is also clear that if a ≺ b in the poset Sd, then a < b in the lattice

D, and since all the maximal chains from a to b in a distributive lattice are of

the same length, which will be denoted by l[a, b], then in the digraph Sd we

can introduce the weight function w assigning to every arc (a, b) the length

of the interval [a, b] in D, i.e. w(a, b) = l[a, b]. The pair (Sd, w) is called the

weighted double skeleton of D.
Let a ≤ b in the poset Sd. Then there is a directed path from a to b in

the weighted double skeleton and let w̄(a, b) denote the weight of the shortest
path from a to b. In fact, in that case all the directed paths are of the same

weight and w̄(a, b) = l[a, b].

Theorem 2. If D is a �nite distributive lattice with the weighted double skele-

ton (Sd, w), then for any k ≥ 0

|Jk(D)| = |Mk(D)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)
.
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In particular,

|D| =
∑

x≤y≤x′
x,y∈S

µS(x, y)2w̄(y,x′).

Moreover,

|Cov(D)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)w̄(y, x′)2w̄(y,x′)−1.

Proof. Let D be a �nite distributive lattice with the weighted double skeleton

(Sd, w). Then maximal Boolean intervals of D can be written in the form

Bx = [x, x′] for x ∈ S. Let us observe that

dimBx = l[x, x′] = w(x, x′)

for any x ∈ S.
Moreover, if x < y in S, then

Bx ∩By �= ∅ i� y ≤ x′.

In that case Bx ∩ By is also a Boolean interval of the dimension l[y, x′] =
w(y, x′).

On the other hand, for any Boolean algebra B and any 0 ≤ k ≤ dimB
we have

|Jk(B)| = |Mk(B)| =
(
dimB

k

)
.

Thus, using Theorem 1, we get

|Jk(D)| = |Mk(D)| =
∑
x≤y

x,y∈S

µS(x, y)|Jk(Bx ∩By)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)
.

In particular,

|D| =
∑
k≥0

|Jk(D)| =
∑
k≥0

∑
x≤y≤x′
x,y∈S

µS(x, y)
(
w̄(y, x′)

k

)

=
∑

x≤y≤x′
x,y∈S

µS(x, y)
∑
k≥0

(
w̄(y, x′)

k

)
=

∑
x≤y≤x′
x,y∈S

µS(x, y)2w̄(y,x′).
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Figure 1:

Now, let us notice that for any m-dimensional Boolean algebra B we have

|Cov(B)| = m2m−1.

Therefore, by Theorem 1,

|Cov(D)| =
∑
x≤y

x,y∈S

µS(x, y)|Cov(Bx ∩By)| =
∑

x≤y≤x′
x,y∈S

µS(x, y)w̄(y, x′)2w̄(y,x′)−1.

Example 1. Let us consider the distributive lattice D from Figure 1. Its

skeleton S is the three-element chain.

For every poset P being a chain x1 ≺ x2 ≺ . . . ≺ xn we have

µP (x1, xi) =


1 if i = 1,

−1 if i = 2,
0 otherwise.

The weighted double skeleton Sd of D can be found in Figure 1. Thus, the

number |J1(D)| of join-irreducible elements of D is counted by the formula:

|J1(D)| = w̄(x, x′) + w̄(y, y′) + w̄(z, z′)− w̄(y, x′)− w̄(z, y′)

= 2 + 2 + 2− 1− 1 = 4,

and the total number of elements of D is given by

|D| = 22 + 22 + 22 − 21 − 21 = 8.

Moreover,

|Cov(D)| = 2 · 21 + 2 · 21 + 2 · 21 − 1 · 20 − 1 · 20 = 10.
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Figure 2:

Example 2. Let us consider the distributive lattice D from Figure 2, whose

skeleton S is a pentagon. Since the skeleton of the pentagon is the trivial

lattice, then D is an H-irreducible lattice (see [4]) and its double skeleton Sd

consists of two copies of the skeleton having one element in common � the top

element of the lattice of zeroes is at the same time the bottom element of the

lattice of units of the maximal Boolean intervals of D. The weighted double

skeleton of D can be seen in Figure 2.

The Möbius function for the pentagon is given by the table below:

a b c d e

a 1 −1 −1 0 1
b x 1 x x −1
c x x 1 −1 0
d x x x 1 −1
e x x x x 1

where x means that the value of µ for the given pair of elements does not

exist.

Thus, the number of elements of D can be counted by the following formula:

|D| =2w̄(a,a′) − 2w̄(b,a′) − 2w̄(c,a′) + 2w̄(e,a′) + 2w̄(b,b′)

− 2w̄(e,b′) + 2w̄(c,c′) − 2w̄(d,c′) + 2w̄(d,d′) − 2w̄(e,d′) + 2w̄(e,e′)

=23 − 21 − 22 + 20 + 22 − 21 + 23 − 22 + 23 − 22 + 23 = 21.
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