Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Morocco faces a growing waste issue due to population growth, economic expansion, and industrialization, leading to environmental concerns, especially regarding leachate. From 1986 to 2022, Casablanca's main landfill produced a total of 800,000 m³ of leachate, which was stored in evaporation ponds, posing significant environmental risks. Our research not only concentrates on traditional chemical analyses for leachate assessments but also emphasizes ecosystem interactions. Phytotoxicity tests assess the impact of contaminants, particularly heavy metals, complementing traditional chemical analyses. Our study investigated the accumulation of these contaminants in the soil and their subsequent transfer to plant tissues. This research aimed to examine the accumulation of heavy metals, including Pb, Cd, and Hg, in soils irrigated with varying leachate concentrations (C0: control; C1: 5%; C2: 7%; C3: 10%; and C4: 15%). The experiments involved the cultivation of M. sativa plants under open-field conditions. To assess the transfer of metals from soil to plant tissues, the transfer factor (TF) index was calculated. Our findings revealed that Pb, Cd, and Hg exhibited transfer factor ranges of 0.55–0.93, 0.07 to 0.21, and 0.1 to 0.37, respectively. The accumulation of heavy metals at the different leachate concentrations followed the order Pb>Hg>Cd.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
336--346
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Health and Environment Laboratory, Department of Biology, Ain Chock Science Faculty, Hassan II University, Casablanca, Morocco
autor
- Laboratory for Improvement of Agricultural Production, Biotechnology and Environment (LAPABE)/ Water, Environment and Health Team, Faculty of Science, Mohamed Premier University, PB 717 60000, BV M6, Oujda, Morocco
autor
- Chemistry and Toxicology Unit, Casablanca Regional Laboratory for Analysis and Research, National Office of Food Safety (ONSSA), Morocco
autor
- Health and Environment Laboratory, Department of Biology, Ain Chock Science Faculty, Hassan II University, Casablanca, Morocco
- Vegetal Biotechnology, Ecology and Ecosystem Valuation Laboratory, Department of Biology, El Jadida Science Faculty, Chouaib Doukkali University, El Jadida, Morocco
autor
- Health and Environment Laboratory, Department of Biology, Ain Chock Science Faculty, Hassan II University, Casablanca, Morocco
Bibliografia
- 1. Afkhami, A., Norooz-Asl, R., 2009. Cloud point extraction for the spectrophotometric determination of phosphorus (V) in water samples. Journal of Hazardous Materials, 167(1–3), 752–755. https://doi.org/10.1016/j.jhazmat.2009.01.039
- 2. Arabi, M., Mechkirrou, L., El Malki, M., Alaoui, K., Chaieb, A., Maaroufi, F., Karmich, S., 2024a. Overview of Ecological Dynamics in MoroccoBiodiversity, Water Scarcity, Climate Change, Anthropogenic Pressures, and Energy ResourcesNavigating Towards Ecosolutions and Sustainable Development. In E3S Web of Conferences - EDP Sciences, 527, 01001. https://doi.org/10.1051/e3sconf/202452701001
- 3. Arabi, M., Chaïeb, A., Khattach, D., Hritta, D., Gamgami, O., 2024b. Impact assessment of the effects of the former uncontrolled landfill of Sidi Yahya Oujda (Morocco) on groundwater using physicochemical, geological and electrical triple approaches. In E3S Web of Conferences - EDP Sciences, 527. 02018. https://doi.org/10.1051/e3sconf/202452702018
- 4. Arabi, M., Sbaa, M., Vanclooster, M., Darmous, A., 2020. Impact of the municipal solid waste typology on leachate flow under semiarid climate – a case study. Journal of Ecological Engineering, 21(6), 94-101. https://doi.org/10.12911/22998993/123250
- 5. Belghyti, D., El Guamri, Y., Ztit, G., Ouahidi, M., Joti, M., Harchrass, A., Amghar, H., Bouchouata, O., El Kharrim, K., Bounouira, H., 2009. Caractérisation physico-chimique des eaux usées d’abattoir en vue de la mise en œuvre d’un traitement adéquat: cas de Kénitra au Maroc. Afrique Science: Revue Internationale des Sciences et Technologie, 5(2). https://doi.org/10.4314/afsci.v5i2.61730
- 6. Bouizgaren, A., Farissi, M., Ghoulam, C., Kallida, R., Faghire, M., Barakate, M., Al Feddy, M. N., 2013. Assessment of summer drought tolerance variability in Mediterranean alfalfa (Medicago sativa L.) cultivars under Moroccan fields conditions. Archives of Agronomy and Soil Science, 59(1), 147-160.
- 7. Bożym, M., Król, A., Mizerna, K., 2021. Leachate and contact test with Lepidium sativum L. to assess the phytotoxicity of waste. International Journal of Environmental Science and Technology, 18, 19751990. https://doi.org/10.1007/s13762-020-02980-x
- 8. Breckle, C.W., 1991. Growth under Heavy Metals, in: Y. Waisel, A. Eshel and U. Kafkafi, Plant Roots: The Hidden Half, (Marcel Dekker, New York 1991).
- 9. Brouwer, C., Goffeau, A., Heibloem, M., 1985. Introduction to irrigationa. Irrigation Water Management. Training manual (FAO), 1.
- 10. CSG, 1995. Collaborative Study Guidelines. J. AOAC Int. 78(5), 143A–161A.
- 11. Chaouki, Z., El Mrabet, I., Khalil, F., Ijjaali, M., Rafqah, S., Anouar, S., Nawdali, M., Valdes,
- 12. H., Zaitan, H., 2017. Use of coagulation-flocculation process for the treatment of the landfill leachates of Casablanca city (Morocco). Journal of Materials and Environmental Sciences, 8(8), 2781–2791.
- 13. DRWP, 2007. Dirctorate of Research and Water Planning, Water Quality Standards for Water Irrigation (State Secretariat at the Ministry of Energy, Mines, Water and Environment, Rabat, Morocco).
- 14. Farissi, M., Bouizgaren, A., Faghire, M., Bargaz, A., Ghoulam, C., 2013. Agrophysiological and biochemical properties associated with adaptation of Medicago sativa populations to water deficit. Turkish Journal of Botany, 37(6), 1166–1175. https://doi.org/10.3906/bot-1211-16
- 15. Ghalloudi, J., Zahour, G., Talbi, M., 2015. Évaluation de la première expérience de gestion déléguée des déchets ménagers à Casablanca, Maroc. European Scientific Journal, 11(2), 237–263.
- 16. Griffith, M., Super, K., Lynch, W.C., Fishman, B.E., 2001. Accumulation of metals in vegetation from an alkaline artificial soil. Journal of Environmental Science and Health, Part A, 36, 49–61. https://doi.org/10.1081/ESE-100000471
- 17. Harter, R.D., 1983. Effect of soil pH on adsorption of lead, copper, zinc, and nickel. Soil Science Society of America Journal, 47, 47–51. https://doi.org/10.2136/SSSAJ1983.03615995004700010009X
- 18. Jafarian-Dehkordi, A., Alehashem, M., 2013. Heavy metal contamination of vegetables in Isfahan, Iran. Research in pharmaceutical sciences, 8(1), 51.
- 19. Jiang, H.M., Jiang, J.P., Jia, Y., Li, F.M., Xu, J.Z., 2006. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semiarid Loess Plateau in China. Soil Biology and Biochemistry, 38(8), 23502358. https://doi.org/10.1016/j.soilbio.2006.02.008
- 20. Kanmani, S., Gandhimathi, R., 2013. Assessment of heavy metal contamination in soil due to leachate migration from an open dumping site. Applied water science, 3, 193–205. https://doi.org/10.1007/s13201-012-0072-z
- 21. Kastali, M., Mouhir, L., Madinzi, A., Taleb, A., Anouzla, A., Souabi, S., 2022. Reducing Pollution of Stabilized Landfill Leachate by Mixing of Coagulants and Flocculants: A Comparative Study. IntechOpen. http://dx.doi.org/10.5772/ intechopen.97253
- 22. Kukier, U., Peters, C., Chaney, R.L., Angle, J.S., Roseberg, R.J., 2004. The effect of pH on metal accumulation in two Alyssum species. Journal of environmental quality, 33(6), 2090–102. https://doi.org/10.2134/JEQ2004.2090
- 23. Kim, H., Lee, M., Kim, H.S., Kim, K., 2019. Exploration of heavy metal(loid)s immobilizing agents available for agricultural lands and their combination effects. Korean Journal of Soil Science and Fertilizer. https://doi.org/10.7745/kjssf.2019.52.3.297
- 24. Luo, Y.Z., Li, G., Yan, G., Liu, H., Turner, N.C., 2020. Morphological features and biomass partitioning of lucerne plants (Medicago sativa L.) subjected to water stress. Agronomy, 10(3), 322. https://doi.org/10.3390/agronomy10030322
- 25. MEF, 2007. Ministry of the Environment Finland : Government decree on the assessment of soil contamination and remediation needs, Finland.
- 26. Mirecki, N., Agic, R., Sunic, L., Milenkovic, L., Ilic, Z.S., 2015. Transfer factor as indicator of heavy metals content in plants. Fresenius Environmental Bulletin, 24(11c), 4212–4219.
- 27. Mohale, L.R., 2011. Impact of cyanobacterial toxins on water quality and supply. Doctoral dissertation, University of the Free State Bloemfontein.
- 28. Olănescu, G., Gament, E., Dumitru, M., 2007. Fitoextracţia solurilor poluate Cu metafile grele. Lucrări Ştinţifice Facultatea de Agricultură Bucureşti, seria A, I, 359.
- 29. Olowoyo, J.O., Van Heerden, E., Fischer, J.L., Baker, C., 2010. Trace metals in soil and leaves of Jacaranda mimosifolia in Tshwane area, South Africa. Atmospheric Environment, 44(14), 1826–1830.
- 30. Ouansafi, S., Abdelilah, F., Kabine, M., Maaghloud, H., Bellali, F., Bouqdaoui, K.E., 2019. The effects of soil proprieties on the yield and the growth of tomato plants and fruits irrigated by treated wastewater. AIMS Agriculture & Food, 4(4), 921–938. https://doi.org/10.3934/agrfood.2019.4.921
- 31. Ouigmane, A., Boudouch, O., Hasib, A., Berkani, M., Aadraoui, M., Dhairi, E., 2017. The size effect in the distribution of combustible components in the municipal solid waste produced in the summer time. Case of the City of Beni Mellal-Morocco. Journal of Materials and Environmental Science, 8(8), 2729–2737.
- 32. Panchagnula, S., 2018. Spectrophotometric analysis of water for nitrate and nitrite nitrogen. International journal of research and analytical reviews, 5, 226–230.
- 33. Radović, J., Sokolović, D., Marković, J.J.B.A.H., 2009. Alfalfa-most important perennial forage legume in animal husbandry. Biotechnology in Animal Husbandry, 25(5–6–1), 465–475. https://doi.org/10.2298/bah0906465r
- 34. Rangnekar, S.S., Sahu, S.K., Pandit, G.G., Gaikwad, V.B., 2013. Study of uptake of Pb and Cd by three nutritionally important Indian vegetables grown in artificially contaminated soils of Mumbai, India. International Research Journal of Environmental Sciences, 2(1), 1–5.
- 35. Reddy, P.J., 2016. Energy recovery from municipal solid waste by thermal conversion technologies, 474. Boca Raton: CRC press. https://doi.org/10.1201/b21307
- 36. Renou, S., Givaudan, J.G., Poulain, S., Dirassouyan, F., Moulin, P., 2008. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 150(3), 468–493. https://doi.org/10.1016/j.jhazmat.2007.09.077
- 37. Rodier, J., 2009. L’analyse de l’eau (9ème Edition. Dunod, Paris, 2009).
- 38. Rodier, J., Legube, B., Merlet, N., 2016. L’analyse de l’eau-10e éd. Dunod.
- 39. Rodier, J., 1986. Water analysis: natural waters, waste water and sea water. 7th edition, Dunod, Paris (1986).
- 40. Romero, C., Ramos, P., Costa, C., Márquez, M.C., 2013. Raw and digested municipal waste compost leachate as potential fertilizer: comparison with a commercial fertilizer. Journal of Cleaner Production, 59, 73–78. https://doi.org/10.1016/j.jclepro.2013.06.044
- 41. Rusu, M.C., Mărghitaş, M., Mihăiescu, T., 2005. Tratat de agrochimie. CERES.
- 42. Scarlat, N., Fahl, F., Dallemand, J.F., 2019. Status and opportunities for energy recovery from municipal solid waste in Europe. Waste. Biomass and Valorization, 10(2019), 2425–2444. https://doi.org/10.1007/s12649–018–0297–7
- 43. Scott, T.J., Mitchell, M.J., Santos, A., Destaffen, P., 1989. Comparison of two methods for measuring ammonium in solution samples. Communications in soil science and plant analysis, 20(11–12), 11311144. https://doi.org/10.1080/00103629009368141
- 44. SEDD, 2019. Stratégie Nationale de Réduction et de Valorization des Déchets. Report (In French). Environment Ministry, Morocco.
- 45. Seyyedi, M., Timko, M.P., Sundqvist, C., 1999. Protochlorophyllide, NADPH‐protochlorophyllide oxidoreductase, and chlorophyll formation in the lip1 mutant of pea. Physiologia Plantarum, 106(3), 344–354. https://doi.org/10.1034/j.1399-3054.1999.106313.x
- 46. Singh, B.R., Narwal, R.P., Jeng, A.S., Almås, Å.R., 1995. Crop uptake and extractability of cadmium in soils naturally high in metals at different pH levels. Communications in Soil Science and Plant Analysis, 26, 2123–2142. https://doi.org/10.1080/00103629509369434
- 47. Singh, S., Raju, N.J., RamaKrishna, C., 2017. Assessment of the effect of landfill leachate irrigation of different doses on wheat plant growth and harvest index: A laboratory simulation study. Environmental Nanotechnology, Monitoring & Management, 8, 150–156. https://doi.org/10.1016/j.enmm.2017.07.005
- 48. Smahi, D., Fekri, A., El Hammoumi, O., 2013. Environmental impact of Casablanca landfill on groundwater quality, Morocco. Journal of Geosciences, 4, 202–211. https://doi.org/10.4236/ijg.2013.41017
- 49. Torretta, V., Ferronato, N., Katsoyiannis, I.A., Tolkou, A.K., Airoldi, M., 2016. Novel and conventional technologies for landfill leachates treatment: A review. Sustainability, 9(1), 9. https://doi.org/10.3390/su9010009
- 50. Turki, N., Bouzid, J., 2017. Effects of landfill leachate application on crops growth and properties of a Mediterranean sandy soil. Journal of Pollution Effects & Control, 5(186), 1000186. https://doi.org/10.4176/2375-4397.1000186
- 51. WHO, 2015. World Health Organization : Guidelines for Drinking Water Quality; Final Task Group Meeting, (Geneva, Switzerland, 2015).
- 52. Xiao, H., Yan, W., Zhao, Z., Tang, Y., Li, Y., Yang, Q., Luo, S., Jiang, B., 2022. Chlorate induced false reduction in chemical oxygen demand (COD) based on standard dichromate method: Countermeasure and mechanism. Water research, 221, 118732. https://doi.org/10.1016/j.watres.2022.118732
- 53. Mahmoudabadi, T.Z., Ehrampoush, M.H., Talebi, P., Fouladi-Fard, R., Eslami, H., 2021. Comparison of poly ferric chloride and poly titanium tetrachloride in coagulation and flocculation process for paper and cardboard wastewater treatment. Environmental Science and Pollution Research, 28, 2726227272. https://doi.org/0.1007/s11356-021-12675-6
- 54. Zhang, H., Ma, G., Sun, L., Li, H., 2018. Effect of alkaline material on phytotoxicity and bioavailability of Cu, Cd, Pb and Zn in stabilized sewage sludge. Environmental Technology, 39, 2168–2177. https://doi.org/10.1080/09593330.2017.1351496
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-427a6cc3-f1af-49fe-99f0-fc7c946b56f1