PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Leaching of heavy metals from contaminated soil stabilised by Portland cement and slag Bremen

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaching behaviour is an important evidence of soil quality. The assessment of leaching of heavy metals from the contaminated soil is vital for environmental applications. However, leaching may differ in soil stabilised by various ratios of binders. In this study we measured leaching behaviour of soil contaminated by As, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Zn, methyl Hg, aliphatic compounds of hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and dissolved organic carbon (DOC). To evaluate leaching of these substances we tested the effects of changed amount of binder (120 kg and 150 kg) and binder ratios (70/30 %, 50/50 % and 30/70 %) added to soil samples. Soil was dredged from several stations in Ostrand area, SCA Sundsvall Ortvikens Pappersbruk. The results demonstrated a systematically decreasing leaching with the increased slag. The contribution of this research include: (i) devising systematic approach to extract information on leaching from stabilised soil collected from the coastal area of Bothnian Bay, (ii) developing a workflow for stabilising soils by various combination of Portland cement Basement CEM II/A-V (SS EN 197-1) and ground granulated blast furnace slag (GGBFS), Bremen type (SS EN 15167-1), (iii) determining water ratio and density for the untreated and stabilised soil and performing comparative analysis, (iv) evaluating chemical content of pollutants and toxic elements in the aggregated soil samples. Treatment of the contaminated soil by binders improved its parameters by the increased strength and decreased leaching of heavy metals and toxic elements.
Rocznik
Strony
537--552
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
  • Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
  • Lund University, Lunds Tekniska Högskola (Faculty of Engineering), Department of Building and Environmental Technology, Division of Building Materials, Box 118, SE-221-00, Lund, Sweden
  • Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA), Bld. L, Campus de Solbosch CP131/3, Av. F.D. Roosevelt 50, B-1050, Brussels, Belgium
Bibliografia
  • [1] Barman D, Dash SK, J Rock Mech Geotech Eng. 2022;14(4):1319-42. DOI: 10.1016/j.jrmge.2022.02.011.
  • [2] Karamalidis AK, Voudrias EA. J Environ Eng. 2008:134(6):493-504. DOI: 10.1061/(ASCE)0733-9372(2008)134:6(493).
  • [3] Guotang Z, Wei S, Guotao Y, Li P, Degou C, Jinyang J, et al. Constr Build Mater. 2017;144:347-56. DOI: 10.1016/j.conbuildmat.2017.03.194.
  • [4] Lindh P, Lemenkova P. Acta Mech Autom. 2021;15(4):236-48. DOI: 10.2478/ama-2021-0030.
  • [5] Park K-S, Kim H-S, Park K-Y. OCEANS 2006 - Asia Pacific, 1-4. DOI: 10.1109/OCEANSAP.2006.4393848.
  • [6] Becker J, Aydilek AH, Davis AP, Seagren EA. J Environ Eng. 2013;139(5):642-53. DOI: 10.1061/(ASCE)EE.1943-7870.0000668.
  • [7] Morar DL, Aydilek AH, Seagren EA, Demirkan MM. J Environ Eng. 2012;138(8):815-25. DOI: 10.1061/(ASCE)EE.1943-7870.0000531.
  • [8] Chittoori BCS, Puppala AJ, Wejrungsikul T, Hoyos LR. J Geotech Geoenviron Eng. 2013;139(10):1665-75. DOI: 10.1061/(ASCE)GT.1943-5606.0000920.
  • [9] Xu DM, Fu RB, Wang JX, Shi YX, Guo XP. J Clean Prod. 2021;321:128730. DOI: 10.1016/j.jclepro.2021.128730.
  • [10] Källén H, Heyden A, Åström K, Lindh P. Measurement. 2016;84:56-67. DOI: 10.1016/j.measurement.2016.02.007.
  • [11] Ikeagwuani CC, Nwonu DC. J Rock Mech Geotech Eng. 2019;11(2):423-40. DOI: 10.1016/j.jrmge.2018.08.013.
  • [12] Lindh P, Winter MG. Q J Eng Geol Hydrogeol. 2003;36(4):321-30. DOI: 10.1144/1470-9236/03-018.
  • [13] Fasihnikoutalab MH, Asadi A, Unluer C, Huat BK, Ball RJ, Pourakbar S. J Mater Civ Eng. 2017;29(6):06017002. DOI: 10.1061/(ASCE)MT.1943-5533.0001833.
  • [14] Consoli NC, Rizzati de Moraes R, Festugato L. J Mater Civ Eng. 2013;25(10):1568-73. DOI: 10.1061/(ASCE)MT.1943-5533.0000555.
  • [15] Lemenkov V, Lemenkova P. Civ Environ Eng Rep. 2021;31(2):63-84. DOI: 10.2478/ceer-2021-0020.
  • [16] Baldovino JA, Moreira EB, dos Santos Izzo RL, Rose JL. J. Mater. Civ. Eng. 2018;30(8):06018008. DOI: 10.1061/(ASCE)MT.1943-5533.0002378.
  • [17] Červinková M, Blaha A, Meegoda JN. Practice Periodical Hazardous, Toxic, Radioactive Waste Manage. 2007;11(2):106-13. DOI: 10.1061/(ASCE)1090-025X(2007)11:2(106).
  • [18] Chaudhari OA, Biernacki JJ. J Environ Eng. 2013;139(5):633-641. DOI: 10.1061/(ASCE)EE.1943-7870.0000628.
  • [19] Dushyantha NP, Ratnayake NP, Premasiri HMR, Ilankoon IMSK, Hemalal PVA, Jayawardena CL, et al. Hydrometallurgy. 2021;205:105751. DOI: 10.1016/j.hydromet.2021.105751.
  • [20] Brahim JA, Hak SA, Achiou B, Boulif R, Beniazza R, Benhida R. Miner Eng. 2022;177:107351. DOI: 10.1016/j.mineng.2021.107351.
  • [21] Bridson JH, Gaugler EC, Smith DA, Northcott GL, Gaw S. J Hazard Mater. 2021;414:125571. DOI: 10.1016/j.jhazmat.2021.125571.
  • [22] Sauer JJ, Benson CH, Aydilek AH, Edil TB. J Geotech Geoenviron Eng. 2012;138(8):968-80. DOI: 10.1061/(ASCE)GT.1943-5606.0000653.
  • [23] Renjith R, Robert D, Setunge S, Costa S, Mohajerani A. J Clean Prod. 2021;294:126264. DOI: 10.1016/j.jclepro.2021.126264.
  • [24] Lemenkov V, Lemenkova P. J Appl Eng Sci. 2021B;11(2):113-20. DOI: 10.2478/jaes-2021-0015.
  • [25] Leonard SA, Stegemann JA. J Environ Eng. 2010;136(12):1369-1378. DOI: 10.1061/(ASCE)EE.1943-7870.0000282.
  • [26] Kiani M, Raave H, Simojoki A, Tammeorg O, Tammeorg P. Sci Total Environ. 2021;753:141984. DOI: 10.1016/j.scitotenv.2020.141984.
  • [27] Fuessle RW, Taylor MA. J Environ Eng. 2004;130(5):492-8. DOI: 10.1061/(ASCE)0733-9372(2004)130:5(492).
  • [28] Wu HL, Du YJ, Wang F, Wei ML, Feng YS. Geotechnical Frontiers. 2017;414-22. DOI: 10.1061/9780784480434.045.
  • [29] Ilić P, Ilić S, Markić D, Bjelić L, Farooqi Z, Sole B, Adimalla N. Ecol Chem Eng S. 2021;28(3):355-63. DOI: 10.2478/eces-2021-0024.
  • [30] Chandnani G, Gandhi P, Kanpariya D, Parikh D, Shah M, Groundw. Sustain Dev. 2022;19:100813. DOI: 10.1016/j.gsd.2022.100813.
  • [31] Lindh P, Lemenkova P. Nordic Concrete Research. 2021;65(2):39-62. DOI: 10.2478/ncr-2021-0012.
  • [32] Lindh P. Ground Improvement. 2001;5(1):23-34. DOI: 10.1680/grim.2001.5.1.23.
  • [33] Rothhämel M, Tole I, Mácsik J, Laue J. Transp Geotech. 2022;34:100735. DOI: 10.1016/j.trgeo.2022.100735.
  • [34] Karami H, Pooni J, Robert D, Costa S, Li J, Setunge S. Transp Geotech. 2021;29:100585. DOI: 10.1016/j.trgeo.2021.100585.
  • [35] Swedish Institute for Standards, 2011. Cement - Part 1: Composition, specifications and conformity criteria for common cements. Swedish standard SS-EN 197-1:2011. Available from: https://www.sis.se/en/produkter/construction-materials-and-building/construction-materials/cement-gypsumlime-mortar/ssen197120112/.
  • [36] Swedish Institute for Standards, 2006. Ground granulated blast furnace slag for use in concrete, mortar and grout - Part 1: Definitions, specifications and conformity criteria. Swedish standard SS-EN 15167-1:2006. Available from: https://www.sis.se/en/produkter/standardization/vocabularies/construction-materials-andbuilding-vocabularies/ssen1516712006/.
  • [37] Swedish Institute for Standards, 2003. Characterization of waste - Leaching - Compliance test for leaching of granular waste materials and sludges - Part 2: One stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). SS-EN 12457-2, 2003. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/wastes/solidwastes/ssen124572/.
  • [38] Swedish Institute for Standards, 2003. Characterisation of waste - Leaching behaviour test for basic characterisation - Dynamic monolithic leaching test with periodic leachant renewal, under fixed test conditions. ISO standard 15863. Available from: https://www.sis.se/en/produkter/environment-healthprotection-safety/wastes/solid-wastes/ssen158632015/.
  • [39] Swedish Institute for Standards, 2015. Characterization of waste - Leaching behaviour test for basic characterization - Dynamic monolithic leaching test with periodic leachant renewal, under fixed conditions. Swedish standard SS-EN 15863:2015. Available from: https://www.sis.se/en/produkter/environment-healthprotection-safety/wastes/solid-wastes/ssen158632015/.
  • [40] Swedish Institute for Standards, 2014. Geotechnical investigation and testing - Laboratory testing of soil - Part 1: Determination of water content (ISO 17892-1:2014). Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physicalproperties-of-soils/sseniso1789212014/.
  • [41] Swedish Institute for Standards, 2014. Geotechnical investigation and testing - Laboratory testing of soil - Part 2: Determination of bulk density (ISO 17892-2:2014). Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physicalproperties-of-soils/sseniso1789222014/.
  • [42] Swedish Institute for Standards, 2017. Geotechnical investigation and testing - Laboratory testing of soil - Part 7: Unconfined compression test (ISO 17892-7:2017). Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/physicalproperties-of-soils/ss-en-iso-17892-72018/.
  • [43] Swedish Institute for Standards, 2013. Soil quality - Determination of trace elements using inductively coupled plasma mass spectrometry (ICP-MS). ISO/TS 16965:2013. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/soil-quality-pedology/chemicalcharacteristics-of-soils/isots169652013/.
  • [44] Swedish Institute for Standards, 2016. Sludge, treated biowaste and soil - Determination of elements using inductively coupled plasma mass spectrometry (ICP-MS). Swedish standard SS-EN 16171:2016. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/wastes/general/ssen161712016/.
  • [45] Swedish Institute for Standards, 2016. Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes. SS-EN ISO 17294-2:2016. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/waterquality/examination-of-water-for-chemical-substances/sseniso1729422016/.
  • [46] Swedish Institute for Standards, 2008. Water quality - Determination of mercury - Method using atomic fluorescence spectrometry (ISO 17852:2006). Swedish standard SS-EN ISO 17852:2008. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/water-quality/examination-of-waterfor-chemical-substances/sseniso178522008/.
  • [47] Swedish Institute for Standards, 1997. Water analysis - Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC). Swedish standard SS EN 1484:1997. Available from: https://www.sis.se/en/produkter/environment-health-protection-safety/water-quality/sewagewater/ssen1484/.
  • [48] Du YJ, Wei ML, Reddy KR, Jin F, Wu HL, Liu ZB. J Environ Manage. 2014;146:179-88. DOI: 10.1016/j.jenvman.2014.07.035.
  • [49] Chen K, Wu D, Zhang Z, Pan C, Shen X, Xia L, et al. Constr Build Mater. 2022;315:125723. DOI: 10.1016/j.conbuildmat.2021.125723.
  • [50] Lindh P, Lemenkova P. Baltica. 2022;35(1):47-59. DOI: 10.5200/baltica.2022.1.4.
  • [51] Wang F, Xu J, Yin H, Zhang Y, Pan H, Wang L. Environ Pollut. 2021;284:117178. DOI: 10.1016/j.envpol.2021.117178.
  • [52] Bhunia P, Bandyopadhyay M. J Environ Sci Eng. 2004;46(1):1-9. PMID: 16649586.
  • [53] van der Hoek E, Comans R. Stud Environ Sci. 1994;60:467-76. DOI: 10.1016/S0166-1116(08)71479-1.
  • [54] Seki T, Nakamura K, Ogawa Y, Inoue C. Environ Monit Assess. 2021;26:193(4):225. DOI: 10.1007/s10661-021-08954-x.
  • [55] Williamson AJ, Verbruggen F, Chavez Rico VS, Bergmans J, Spooren J, Yurramendi L, et al. J Hazard Mater. 2021;403:123842. DOI: 10.1016/j.jhazmat.2020.123842.
  • [56] Xue Y, Hu Z, Wang C, Xiao Y. Constr Build Mater. 2019;218:465-76. DOI: 10.1016/j.conbuildmat.2019.05.060.
  • [57] Badawy W, Frontasyeva M, Ibrahim M. Ecol Chem Eng S. 2020;27(2):281-94. DOI: 10.2478/eces-2020-0018.
  • [58] Alvarez JM, Novillo J, Obrador A, López-Valdivia LM. J Agric Food Chem. 2001;49(8):3833-40. DOI: 10.1021/jf010037i.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-427a6356-c169-43b6-99a8-3282c7ae0bd3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.