PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A feasible schedule for parallel assembly tasks in flexible manufacturing systems

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the design of a framework for implementing fault-tolerant control of hybrid assembly systems that connect human operators and fully automated technical systems. The main difficulty in such systems is related to delays that result from objective factors influencing human operators’ work, e.g., fatigue, experience, etc. As the battery assembly system can be considered a firm real-time one, these delays are treated as faults. The presented approach guarantees real-time compensation of delays, and the fully automated part of the system is responsible for this compensation. The paper begins with a detailed description of a battery assembly system in which two cooperating parts can be distinguished: fully automatic and semi-automatic. The latter, nonderministic in nature, is the main focus of this paper. To describe and analyze the states of the battery assembly system, instead of the most commonly used simulation, the classic max-plus algebra with an extension allowing one to express non-deterministic human operators’ work is used. In order to synchronize tasks and schedule (according to the reference schedule) automated and human operators’ tasks, it is proposed to use a wireless IoT platform called KIS.ME. As a result, it allows a reference model of human performance to be defined using fuzzy logic. Having such a model, predictive delays tolerant planning is proposed. The final part of the paper presents the achieved results, which clearly indicate the potential benefits that can be obtained by combining the wireless KIS.ME architecture (allocated in the semi-automatic part of the system) with wired standard production networks.
Rocznik
Strony
51--63
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Institute of Control and Computation Engineering University of Zielona Góra ul. Szafrana 2, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] Baccelli, F., Cohen, G., Olsder, G.J. and Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra for Discrete Event Systems, John Wiley& Sons, Hoboken.
  • [2] Baruwa, O.T., Piera, M.A. and Guasch, A. (2015). Deadlock-free scheduling method for flexible manufacturing systems based on timed colored Petri nets and anytime heuristic search, IEEE Transactions on Systems, Man, and Cybernetics: Systems 45(5): 1–12.
  • [3] Butkovic, P. (2010). Max-Linear Systems: Theory and Algorithms, Springer, London.
  • [4] Dizdar, E.N. and Koçar, O. (2020). Fuzzy logic-based decision-making system design for safe forklift truck speed: Cast cobblestone production application, Soft Computing 24(19): 1–14.
  • [5] Ebrahimi, A., Sajadi, S., Roshanzamir, P. and Azizi, M. (2015). Determining the optimal performance of flexible manufacturing systems using network analysis and simulation process, International Journal of Management, Economics and and Social Sciences 4(1): 12–17.
  • [6] Groover, M. (2014). Automation, Production Systems, and Computer-Integrated Manufacturing, 3rd Edition, Pearson, London.
  • [7] Kopetz, H. (2011). Real-Time Systems: Design Principles for Distributed Embedded Applications, Springer, Boston.
  • [8] Madakam, S., Ramaswamy R. and Tripathi, S. (2015). Internet of things (IoT): A literature review, Journl of Computing and Communications 3(05): 164.
  • [9] Majdzik, P. (2020). Feasible schedule under faults in the assembly system, 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV), Shenzhen, China, pp. 1049–1054.
  • [10] Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R. and Mrugalska, B. (2016). A fault-tolerant approach to the control of a battery assembly system, Control Engineering Practice 55: 139–148.
  • [11] Majdzik, P., Witczak, M., Lipiec, B. and Banaszak, Z. (2021). Integrated fault-tolerant control of assembly and automated guided vehicle-based transportation layers, International Journal of Computer Integrated Manufacturing: 1–18, DOI: 10.1080/0951192X.2021.1872103.
  • [12] Mircetic, D., Ralevic, N., Nikolicic, S., Maslaric, M. and Stojanovic, D. (2016). Expert system models for forecasting forklifts engagement in a warehouse loading operation: A case study, PROMET— Traffic&Transportation 28(4): 393–401.
  • [13] Nivolianitou, Z. and Konstantinidou, M. (2018). A fuzzy modeling application for human reliability analysis in the process industry, in H. Pham (Ed.), Human Factors and Reliability Engineering for Safety and Security in Critical Infrastructures, Springer, London, pp. 109–154.
  • [14] RAFI GmbH & Co. KG (2021). KIS.ME User Manual, RAFI GmbH & Co. KG, Berg, https://kisme.rafi.de/ documents/KISME-UserManual.pdf.
  • [15] Rousset, A., Herrmann, B., Lang, C. and Philippe, L. (2016). A survey on parallel and distributed multi-agent systems for high performance computing simulations, Computer Science Review 22: 27–46.
  • [16] Rutkowski, T., Łapa, K. and Nielek, R. (2019). On explainable fuzzy recommenders and their performance evaluation, International Journal of Applied Mathematics and Computer Science 29(3): 595–610, DOI: 10.2478/amcs-2019-0044.
  • [17] Salazar, J.C., Sanjuan, A., Nejjari, F. and Sarrate, R. (2020). Health-aware and fault-tolerant control of an octorotor UAV system based on actuator reliability, International Journal of Applied Mathematics and Computer Science 30(1): 47–59, DOI: 10.34768/amcs-2020-0004.
  • [18] Segura, M.A., Hennequin, S. and Finel, B. (2016). Human factor modelled by fuzzy logic in preventive maintenance actions, International Journal of Operational Research 27(1–2): 316–340.
  • [19] Seybold, L., Witczak, M., Majdzik, P. and Stetter, R. (2015). Towards robust predictive fault-tolerant control for a battery assembly system, International Journal of Applied Mathematics and Computer Science 25(4): 849–862, DOI: 10.1515/amcs-2015-0061.
  • [20] Tanaka, K. and Sugeno, M. (1992). Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems 45(2): 135–156.
  • [21] Van Den Boom, T. and De Schutter, B. (2006). Modelling and control of discrete event systems using switching max-plus-linear systems, Control Engineering Practice 14(10): 1199–1211.
  • [22] Witczak, M. (2014). Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Springer, Heidelberg.
  • [23] Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2019). Multiple AGV fault-tolerant within an agile manufacturing warehouse, IFAC-PapersOnLine 52(13): 1914–1919.
  • [24] Witczak, M., Majdzik, P., Stetter, R. and Lipiec, B. (2020). A fault-tolerant control strategy for multiple automated guided vehicles, Journal of Manufacturing Systems 55(4): 56–68.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4276b1bc-6352-4f52-a9a9-ef0422eca5b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.