PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Problems of steady vibrations in the coupled linear theory of double-porosity viscoelastic materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present paper the coupled linear theory of double-porosity viscoelastic materials is considered and the basic boundary value problems (BVPs) of steady vibrations are investigated. Indeed, in the beginning, the systems of equations of motion and steady vibrations are presented. Then, Green’s identities are established and the uniqueness theorems for classical solutions of the BVPs of steady vibrations are proved. The fundamental solution of the system of steady vibration equations is constructed and the basic properties of the potentials (surface and volume) are given. Finally, the existence theorems for classical solutions of the above mentioned BVPs are proved by using the potential method (the boundary integral equations method) and the theory of singular integral equations.
Rocznik
Strony
365--390
Opis fizyczny
Bibliogr. 51 poz., rys. kolor., wykr.
Twórcy
  • Faculty of Exact and Natural Sciences, Tbilisi State University Chavchavadze Ave. 3, 0179 Tbilisi, Georgia
Bibliografia
  • 1. H.F. Brinson, L.C. Brinson, Polymer Engineering Science and Viscoelasticity, Springer Science+Business Media, New York, 2015.
  • 2. R. Lakes, Viscoelastic Materials, Cambridge University Press, Cambridge, 2009.
  • 3. C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, 3rd ed., Springer, Berlin, Heidelberg, New York, 2004.
  • 4. G. Amendola, M. Fabrizio, J.M. Golden, Thermodynamics of Materials with Memory: Theory and Applications, Springer, New York, Dordrecht, Heidelberg, London, 2012.
  • 5. M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, Philadelphia, 1992.
  • 6. R. de Boer, Theory of Porous Media: Highlights in the Historical Development and Current State, Springer, Berlin, Heidelberg, New York, 2000.
  • 7. J. Bear, Modeling Phenomena of Flow and Transport in Porous Media, Springer International Publisher, Cham, Switzerland, 2018.
  • 8. A.H.D. Cheng, Poroelasticity, Theory and Applications of Transport in Porous Media, 27, Springer International Publisher, Switzerland, 2016.
  • 9. O. Coussy, Mechanics and Physics of Porous Solids, Wiley, Chichester, UK, 2010.
  • 10. Y. Ichikawa, A.P.S. Selvadurai, Transport Phenomena in Porous Media: Aspects of Micro/Macro Behaviour, Springer, Berlin, Heidelberg, 2012.
  • 11. H.F. Wang, Theory of Linear Poro-Elasticity with Applications to Geomechanics and Hydrogeology, Princeton, Princeton University Press, 2000.
  • 12. D. Iesan, On the theory of viscoelastic mixtures, Journal of Thermal Stresses, 27, 1125–1148, 2004.
  • 13. D. Iesan, R. Quintanilla, A theory of porous thermoviscoelastic mixtures, Journal of Thermal Stresses, 30, 693–714, 2007.
  • 14. M.M. Svanadze, Steady vibrations problems in the theory of thermoviscoelastic Poros mixtures, Transactions of A. Razmadze Mathematical Institute, 175, 123–141, 2021.
  • 15. M.A. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155–164, 1941.
  • 16. J.R. Booker, C. Savvidou, Consolidation around a spherical heat source, International Journal of Solids and Structures, 20, 1079–1090, 1984.
  • 17. W. Derski, S. Kowalski, Equations of linear thermoconsolidation, Archives of Mechanics, 31, 303–316, 1979.
  • 18. T.S. Nguyen, A.P.S. Selvadurai, Coupled thermal-mechanical-hydrological behaviour of sparsely fractured rock: implications for nuclear fuel waste disposal, International Journal of Rock Mechanics and Mining Sciences, 32, 465–479, 1995.
  • 19. R.L. Schiffman, A thermoelastic theory of consolidation, [in:] C.J. Cremers, F. Kreith, J.A. Clark [eds.], Environmental and Geophysical Heat Transfer, ASME, New York, 78–84, 1971.
  • 20. A.P.S. Selvadurai, A. Suvorov, Thermo-Poroelasticity and Geomechanics, Cambridge University Press, Cambridge, 2017.
  • 21. B. Straughan, Stability and Wave Motion in Porous Media, Springer, New York 2008.
  • 22. B. Straughan, Mathematical Aspects of Multi-Porosity Continua, Advances in Mechanics and Mathematics, 38, Springer International Publishing Science AG, Switzerland, 2017.
  • 23. M. Svanadze, Potential Method in Mathematical Theories of Multi-Porosity Media, Interdisciplinary Applied Mathematics, 51, Springer Nature Switzerland AG, Cham, Switzerland, 2019.
  • 24. M.M. Svanadze, Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity, Archives of Mechanics, 68, 441–458, 2016.
  • 25. M.M. Svanadze, On the solutions of quasi-static and steady vibrations equations in the theory of viscoelasticity for materials with double porosity, Tranactions of A. Razmadze Mathematical Institute, 172, 276–292, 2018.
  • 26. S.C. Cowin, J.W. Nunziato, Linear elastic materials with voids, Journal of Elasticity, 13, 125–147, 1983.
  • 27. J.W. Nunziato, S.C. Cowin, A nonlinear theory of elastic materials with voids, Archive of Rational Mechanics and Analysis, 72, 175–201, 1979.
  • 28. D. Iesan, A theory of thermoelastic materials with voids, Acta Mechanica, 60, 67–89, 1986.
  • 29. M. Ciarletta, D. Iesan, Non-Classical Elastic Solids, Longman Scientific and Technical, John Wiley & Sons, Inc. New York, NY, Harlow, Essex, UK, 1993.
  • 30. D. Iesan, Thermoelastic Models of Continua, Springer Science+Business Media, Dordrecht, 2004.
  • 31. B. Straughan, Convection with Local Thermal Non-Equilibrium and Microfluidic Effects, Advances in Mechanics and Mathematics, 32, Springer, New York, 2015.
  • 32. D. Iesan, On a theory of thermoviscoelastic materials with voids, Journal of Elasticity, 104, 369–384, 2011.
  • 33. D. Iesan, On the nonlinear theory of thermoviscoelastic materials with voids, Journal of Elasticity, 128, 1–16, 2017.
  • 34. S. Chiriµˇa, On the spatial behavior of the steady-state vibrations in thermoviscoelastic porous materials, Journal of Thermal Stresses, 38, 96–109, 2015.
  • 35. S. Chiriµˇa, A. Danescu, Surface waves problem in a thermoviscoelastic porous half-space, Wave Motion, 4, 100–114, 2015.
  • 36. C. D’Apice, S. Chiriµˇa, Plane harmonic waves in the theory of thermoviscoelastic materials with voids, Journal of Thermal Stresses, 39, 142–155, 2016.
  • 37. G. Jaiani, Hierarchical models for viscoelastic Kelvin-Voigt prismatic shells with voids, Bulletin of TICMI, 21, 33–44, 2017.
  • 38. R. Kumar, R. Kumar, Wave propagation at the boundary surface of elastic and initially stressed viscothermoelastic diffusion with voids media, Meccanica, 48, 2173–2188, 2013.
  • 39. S.K. Tomar, J. Bhagwan, H. Steeb, Time harmonic waves in a thermo-viscoelastic material with voids, Journal of Vibration and Contol, 20, 1119–1136, 2013.
  • 40. A. Bucur, On spatial behavior of the solution of a non-standard problem in linear thermoviscoelasticity with voids, Archives of Mechanics, 67, 311–330, 2015.
  • 41. M.M. Svanadze, Potential method in the linear theory of viscoelastic materials with voids, Journal of Elasticity, 114, 101–126, 2014.
  • 42. M.M. Svanadze, Potential method in the theory of thermoviscoelasticity for materials with voids, Journal of Thermal Stresses, 37, 905–927, 2014.
  • 43. M.M. Svanadze, Potential method in the coupled theory of viscoelasticity of porous materials, Journal of Elasticity, 144, 119–140, 2021.
  • 44. M. Svanadze, Potential method in the coupled linear theory of porous elastic solids, Mathematics and Mechanics of Solids, 25, 768–790, 2020.
  • 45. M. Svanadze, Boundary integral equations method in the coupled theory of thermoelasticity for porous materials, Proceedings of ASME, IMECE2019, 9, Mechanics of Solids, Structures, and Fluids, V009T11A033, November 11–14, 2019; https://doi.org/10.1115/IMECE2019-10367.
  • 46. L. Bitsadze, Explicit solution of the Dirichlet boundary value problem of elasticity for porous infinite strip, The Journal of Applied Mechanics and Physics, 71, 145, 2020; https://doi.org /10.1007/s00033-020-01379-5.
  • 47. L. Bitsadze, Explicit solutions of quasi-static problems in the coupled theory of poroelasticity, Continuum Mechanics and Thermodynamics, 2021; https://doi.org/10.1007/s00161-021-01029-9 (in press).
  • 48. M. Mikelashvili, Quasi-static problems in the coupled linear theory of elasticity for porous materials, Acta Mechanica, 231, 877–897, 2020.
  • 49. M. Mikelashvili, Quasi-static problems in the coupled linear theory of thermoporoelasticity, Journal of Thermal Stresses, 44, 236–259, 2021.
  • 50. M. Svanadze, Potential Method in the coupled theory of elastic double-porosity materials, Acta Mechanica, 232, 2307–2329, 2021.
  • 51. V.D. Kupradze, T.G. Gegelia, M.O. Basheleishvili, T.V. Burchuladze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity,Hemishere Publishing Corporation, Amsterdam, New York, Oxford, North-Holland, 1979.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42726640-06c5-4010-a7fa-23b645526e39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.