Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
The article is aimed at the theoretical and experimental evaluation of the thermal efficiency of aluminum ribbing of convector-type heating devices to improve indoor thermal comfort. The purpose of the manuscript is to increase the thermal efficiency of convector heaters with aluminum ribbing based on numerical modeling and obtaining analytical equations for determining the thermal parameters of convectors with aluminum ribbing, which is aimed at maintaining the proper microclimate in the room while ensuring energy savings. A chart of the dependence of the heat amount on the heat carrying medium flow rate, its initial and final temperature, was constructed. It was determined that the amount of heat increases if the flow rate of the heat carrying medium increases, its inlet temperature is increased and the outlet temperature is decreased.
Rocznik
Tom
Strony
200--209
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
- Lviv Polytechnic National University, Ukraine
autor
- Lviv Polytechnic National University, Ukraine
autor
- Technical University of Košice, Slovakia
autor
- Czestochowa University of Technology, Poland
autor
- Lviv Polytechnic National University, Ukraine
autor
- Lviv Polytechnic National University, Ukraine
autor
- Lviv Polytechnic National University, Ukraine
autor
- Lviv Polytechnic National University, Ukraine
autor
- University of Applied Sciences in Nysa, Poland
Bibliografia
- 1. Adamski, M. (2008) Longitudinal flow spiral recuperators in building ventilation systems, Energy and Buildings, 40(10), 1883-1888.
- 2. Adamski, M. (2013) MathModelica in modeling of countercurrent heat exchangers. Proceedings 8th EUROSIM Congress on Modelling and Simulation, 439-442.
- 3. Antypov, I., Gorobets, V. & Trokhaniak, V. (2021) Experimental and numerical investigation of heat and mass transfer processes for determining the optimal design of an accumulator with phase transformations. Journal of Applied and Computational Mechanics, 7(2), 611-620.
- 4. Baldi, S., Korkas, Ch.D., Lv, M. & Kosmatopoulos, E.B. (2018) Automating occupant-building interaction via smart zoning of thermostatic loads: A switched self-tuning approach. Applied Energy, 231, 1246-1258.
- 5. Dzierzgowski, M. (2021) Verification and improving the heat transfer model in radiators in the wide change operating parameters. Energies, 14, 6543.
- 6. Ekim, Z., Mattsson, P. & Bernardo, R. (2023) Assessments of users' interactions with energy-efficient solutions: A systematic review. Building and Environment, 242, 110522.
- 7. Gorobets, V., Trokhaniak, V., Bohdan, Y. & Antypov, I. (2021a) Numerical modeling of heat transfer and hydrodynamics in compact shifted arrangement small diameter tube bundles. Journal of Applied and Computational Mechanics, 7(1), 292-301.
- 8. Gorobets, V., Trokhaniak, V., Masiuk, M., Spodyniuk, N., Blesnyuk, O. & Marchishina, Y. (2021b) CFD modeling of aerodynamic flow in a wind turbine with vertical rotational axis and wind flow concentrator. Agricultural Engineering, 64(2), 159-166
- 9. Gumen, O., Spodyniuk, N., Ulewicz, M. & Martyn, Y. (2017) Research of thermal processes in industrial premises with energy-saving technologies of heating. Diagnostyka, 18(2), 43-49.
- 10. Kapalo, P., Klymenko, H., Zhelykh, V. & Adamski, M. (2020a) Investigation of indoor air quality in the selected Ukraine classroom. Case study. Lecture Notes in Civil Engineering, 47, 168-173.
- 11. Kapalo, P., Vilčeková, S., Mečiarová, L., Domnita, F. & Adamski, M. (2020b) Influence of indoor climate on employees in office buildings. A case study. Sustainability, 12(14), 5569.
- 12. Kapalo, P., Voznyak, O., Yurkevych, Y., Myroniuk, K. & Sukholova, I. (2018) Ensuring comfort microclimate in the classrooms under condition of the required air exchange. Eastern European Journal of Enterprise Technologies, 5(10), 6-14.
- 13. Khovalyg, D., Kazanci, O.B., Halvorsen, H., Gundlach, I., Bahnfleth, W.P., Toftum, J. & Olesen, B.W. (2020) Critical review of standards for indoor thermal environment and air quality. Energy and Buildings, 213, 109819.
- 14. Klymchuk, A., Lozhechnikov, V., Mykhailenko, V. & Lozhechnikova, N. (2019) Improved mathematical model of fluid level dynamics in a drum-type steam generator as a controlled object. Journal of Automation and Information Sciences, 51(5), 65-74.
- 15. Lis, A. (2019) Maintaining thermal comfort and air quality in buildings. Zeszyty Naukowe Politechniki Częstochowskiej. Seria Budownictwo, 25, 137-144.
- 16. Radulescu, V. (2018) Numerical modeling of the intelligent heating systems for living space. MATEC Web of Conferences, 178(1), 0901.
- 17. Savchenko, O., Dzeryn, O. & Lis A. (2023) Features of heat exchange in office premises with radiant cooling. Construction of Optimized Energy Potential, 12, 191-200.
- 18. Shapoval, S., Shapoval, P., Zhelykh, V., Pona, O., Spodyniuk, N., Gulai, B., Savchenko, O. & Myroniuk, K. (2017) Ecological and energy aspects of using the combined solar collectors for low-energy houses. Chemistry and Chemical Technology, 11(4), 503-508.
- 19. Spodyniuk, N. & Lis, A. (2021) Research of temperature regime in the module for poultry growing. In: Blikharskyy, Z. (ed.) Proceedings of EcoComfort 2020. EcoComfort 2020. Lecture Notes in Civil Engineering, 100, 451-458.
- 20. Lis, A. & Ujma A. (2017) Aspects of improving the energy performance of buildings. In: Major, M. & Selejdak, J. (Eds.) Contemporary problems of construction. Practical and numerical solutions. Monographs 330, Częstochowa, Publishing House of Częstochowa University of Technology, 213-222.
- 21. Shayesteh, A.A. & Fazeli A. (2024) Thermal analysis of smartening a central heating unit for a small- -scale network; characteristic, comparisons and impacts. International Journal of Low-Carbon Technologies, 19, 2512-2521.
- 22. Summa, S., Tarabelli, L., Di Perna, C. & Stazi, F. (2024) Data-driven automation of HVAC systems: An experimental study in a university study room. Journal of Building Engineering, 95, 110166.
- 23. Voznyak, O., Spodyniuk, N., Savchenko, O., Sukholova, I., Kasynets, M. & Dovbush. O. (2022) Efficiency of the heating convectors with aluminum ribbing. Pollack Periodica, 17(3), 129-134.
- 24. Zhao, Y. & Li, D. (2023) Multi-domain indoor environmental quality in buildings: A review of their interaction and combined effects on occupant satisfaction. Building and Environment, 228, 109844.
- 25. Zhelykh, V., Ulewicz, M., Spodyniuk, N., Shapoval, S. & Shepitchak, V. (2016) Analysis of the processes of heat exchange on infrared heater surface. Diagnostyka, 17(3), 81-85.
Identyfikator YADDA
bwmeta1.element.baztech-426e1f4c-9e39-4459-b598-a2b3646bd46d