Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of the study was to analyze the changes in the parameters of bacterial cultures and bacterial cellulose (BC) synthesized by four reference strains of Gluconacetobacter xylinus during 31-day cultivation in stationary conditions. The study showed that the most visible changes in the analyzed parameters of BC, regardless of the bacterial strain used for their synthesis, were observed in the first 10–14 days of the experiment. It was also revealed, that among parameters showing dependence associated with the particular bacterial strain were the rate and period of BC synthesis, the growth rate of bacteria anchored to the cellulose fibrils, the capacity to absorb water and the water release rate. The results presented in this work may be useful in the selection of optimum culturing conditions and period from the point of view of good efficiency of the cellulose synthesis process.
Czasopismo
Rocznik
Tom
Strony
117--123
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Department of Immunology, Microbiology and Physiological Chemistry, al. Piastów 45, 70-311 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
autor
- West Pomeranian University of Technology, Szczecin, Institute of Chemical Engineering and Environmental Protection Processes, Faculty of Chemical Technology and Engineering, al. Piastów 42, 70-311 Szczecin, Poland
Bibliografia
- 1. Chawla, P.R., Bajaj, I.B., Survase, S.A. & Singhal, R.S. (2009). Microbial cellulose: fermentative production and applications. Food Technol. Biotechnol. 47(2), 107–124.
- 2. Castro, C., Zuluaga, R., Álvarez, C., Putaux, J.L., Caro, G., Rojas, O.J., Mondragon, I. & Ganán, P. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohyd. Polym. 89(4), 1033–1037. DOI: 10.1016/j.carbpol.2012.03.045.
- 3. Hameed, N.D., Al-Jailawi, M.H. & Jasim, H.M. (2012). Enhancement and optimization of cellulose production by Gluconacetobacter xylinus N2. Sci. J. King Faisal Univ. (Basic and Applied Sciences) 13(2), 77–89.
- 4. Nakagaito, A.N., Nogi, M. & Yano, H. (2010). Displays from transparent films of natural nanofibers. MRS Bulletin 35(3), 214–218. DOI: http://dx.doi.org/10.1557/mrs2010.654
- 5. Saibuatong, O.A. & Phisalaphong, M. (2010). Novo aloe vera - bacterial cellulose composite film from biosynthesis. Carbohyd. Polym. 79(2), 455–460. DOI: 10.1016/j.carbpol.2009.08.039.
- 6. Dahman, Y., Jayasuriya, K.E. & Kalis, M. (2010). Potential of biocellulose nanofibers production from agricultural renewable resources: Preliminary study. Appl. Biochem. Biotech. 162(6), 1647–1659. DOI: 10.1007/s12010-010-8946-8.
- 7. Hornung, M., Ludwig, M., Gerrard, A.M. & Schmauder, H.P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng. Life Sci. 6(6), 546–551. DOI: 10.1002/elsc.200620162.
- 8. Bielecki, S., Krystynowicz, A., Turkiewicz, M. & Kalinowska, H. (2005). Bacterial cellulose. In A. Steinbüchel & S.K. Rhee (Eds.), Polysaccharides and Polyamides in the Food Industry (pp. 31–85). Weinheim: Wiley-VCH Verlag.
- 9. Huang, Y., Zhu, C., Yang, J., Nie, Y., Chen, C. & Sun, D. (2013). Recent advances in bacterial cellulose. Cellulose 21(1), 1–30. DOI: 10.1007/s10570-013-0088-z.
- 10. Legge, R.L. (1990). Microbial cellulose as a specialty chemical. Biotechnol. Adv. 8(2), 303–319. DOI: 10.1016/0734-9750(90)91067-q.
- 11. Lin, S.P., Calvar, I.L., Catchmark, J.M., Liu, J.R., Demirci, A. & Cheng K.C. (2013). Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5), 2191–2219. DOI: 10.1007/s10570-013-9994-3.
- 12. Ruka, D.R., Simon, G.P. & Dean, K.M. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohyd. Polym. 89(2), 613–622. DOI: 10.1016/j.carbpol.2012.03.059.
- 13. Surma-Ślusarska, B., Presler, S. & Danielewicz, D. (2008). Characteristics of bacterial cellulose obtained from Acetobacter xylinum culture for application in papermaking. Fibres Text. East. Eur. 4(69), 108–111.
- 14. El-Saied, H., Basta, A.H. & Gobran, R.H. (2004). Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast. Technol. Eng. 43(3), 797–820. DOI: 10.1081/PPT-120038065.
- 15. Santos, S.M., Carbajo, J.M. & Villar, J.C. (2013). The effect of carbon and nitrogen sources on bacterial cellulose production and properties from Gluconacetobacter sucrofermentans CECT 7291 focused on its use in degraded paper restoration. BioResourses 8(3), 3630–3645.
- 16. Sheykhnazari, S., Tabarsa, T., Ashori, A., Shakeri, A. & Golalipour, M. (2011). Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohyd. Polym. 86(3), 1187–1191. DOI: 10.1016/j.carbpol.2011.06.011.
- 17. Păvăloiu, R.D., Stoica-Guzun, A. & Dobre, T. (2015). Swelling studies of composite hydrogels based on bacterial cellulose and gelatin. U.P.B. Sci. Bull. Ser. B 77(1), 53–62.
- 18. Cheng, Q., Wang, J., McNeel, J. & Jacobson, P. (2010). Water retention value measurements of cellulosic materials using a centrifuge technique. BioResourses 5(3), 1945–1954.
- 19. Tsouko, E., Kourmentza, C., Ladakis, D., Kopsahelis, N., Mandala, I., Papanikolaou, S., Paloukis, F., Alves, V. & Koutinas, A. (2015). Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16(7), 14832–14849. DOI: 10.3390/ijms160714832.
- 20. Hesse, S. & Kondo, T. (2005). Behavior of cellulose production of Acetobacter xylinum in 13C-enriched cultivation media including movements on nematic ordered cellulose templates. Carbohyd. Polym. 60(4), 457–465. DOI: 10.1016/j.carbpol.2005.02.018.
- 21. Koizumi, S., Tomita, Y., Kondo, T. & Hashimoto, T. (2009). What factors determine hierarchical structure of microbial cellulose – interplay among physics, chemistry and biology. Macromol. Symp. 279(1), 110–118. DOI: 10.1002/masy.200950517.
- 22. Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., Mayer, R., Braun, S., de Vroom, E., van der Marel, G.A., van Boom, J.H. & Benziman, M. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325, 279–281. DOI: 10.1038/325279a0.
- 23. Keshk, S. & Sameshima, K. (2005). Evaluation of different carbon sources for bacterial cellulose production. Afr. J. Biotechnol. 4(6), 478–482. DOI: 10.5897/AJB2005.000-3087.
- 24. Toda, K., Asakura, T., Fukaya, M., Entani, E. & Kawamura, Y. (1997). Cellulose production by acetic acid-resistant Acetobacter xylinum. Ferment. Bioeng. 84(3), 228–231. DOI: 10.1016/S0922-338X(97)82059-4.
- 25. Park, J.K., Hyun, S.H. & Jung, J.Y. (2004). Conversion of G. hansenii PJK into non-cellulose-producing mutants according to the culture condition. Biotechnol. Bioproc. Eng. 9(5), 383–388. DOI: 10.1007/BF02933062.
- 26. Çoban, E.P. & Biyik, H. (2011). Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr. J. Biotechnol. 10(27), 5346–5354. DOI: 10.5897/AJB10.1693.
- 27. Son, H.J., Heo, M.S., Kim, Y.G. & Lee, S.J. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol. Appl. Biochem. 33(1), 1–5. DOI: 10.1042/BA20000065.
- 28. Yunoki, S., Osada, Y., Kono, H. & Takai, M. (2004). Role of ethanol in improvement of bacterial cellulose production: analysis using 13C-labeled carbon sources. Food. Sci. Technol. Res. 10(3), 307–313. DOI: 10.3136/fstr.10.307.
- 29. Park, J.K., Jung, J.Y. & Park, Y.H. (2003). Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25(24), 2055–2059. DOI: 10.1023/B:BILE.0000007065.63682.18.
- 30. Pa’, E.N., Hamid, N.I.A., Khairuddin, N., Zahan, K.A., Seng, K.F. & Siddique, B.M. (2014). Effect of different drying methods on the morphology, crystallinity, swelling ability and tensile properties of nata de coco. Sains Malaysiana 43(5), 767–773.
- 31. Lin, S.B., Hsu, C.P., Chen, L.C. & Chen, H.H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocol. 23(8), 2195–2203. DOI: 10.1016/j.foodhyd.2009.05.011.
- 32. Schrecker, S.T. & Gostomski, P.A. (2005). Determining the water holding capacity of microbial cellulose. Biotechnol. Lett. 27(19), 1435–1438. DOI: 10.1007/s10529-005-1465-y.
- 33. Gelin, K., Bodin, A., Gatenholm, P., Mihranyan, A., Edwards, K. & Strømme, M. (2007). Characterization of water in bacterial cellulose using dielectric spectroscopy and electron microscopy. Polymer 48(26), 7623–7631. DOI: 10.1016/j.polymer.2007.10.039.
- 34. Tang, W., Jia, S., Jia, Y. & Yang, H. (2010). The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J. Microb. Biotechnol. 26(1), 125–131. DOI: 10.1007/s11274-009-0151-y.
- 35. Al-Shamary, E.E. & Al-Darwash, A.K. (2013). Influence of fermentation condition and alkali treatment on the porosity and thickness of bacterial cellulose membranes. The Online J. Sci. Technol. 3(2), 194–203.
- 36. Shezad, O., Khan, S., Khan, T. & Park, J.K. (2010). Physico-chemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohyd. Polym. 82(1), 173–180. DOI: 10.1016/j.carbpol.2010.04.052.
- 37. Ougiya, H., Watanabe, K., Matsumura, T. & Yoshinaga. F. (1998). Relationship between suspension properties and fibril structure of disintegrated bacterial cellulose. Biosci. Biotech. Bioch. 62(9), 1714–1719. DOI: 10.1271/bbb.62.1714.
- 38. Shah, N., Ha, J.H. & Park, J.K. (2010). Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioproc. Eng. 15(1), 110–118. DOI: 10.1007/s12257-009-3064-6.
- 39. Tahara, N., Tabuchi, M., Watanabe, K., Yano, H., Morinaga, Y. & Yoshinaga, F. (1997). Degree of polymerization of cellulose from Acetobacter xylinum BPR2001 decreased by cellulase produced by the strain. Biosci. Biotech. Bioch. 61(11), 1862–1865. DOI: 10.1271/bbb.61.1862.
- 40. Liu, Y., Thibodeaux, D., Gamble, G., Bauer, P. & van Derveer, D. (2012). Comparative investigation of Fourier Transform Infrared (FT-IR) spectroscopy and X-ray Diffraction (XRD) in the determination of cotton fiber crystallinity. Appl. Spectrosc. 66(8), 983–986. DOI: 10.1366/12-06611.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4268e4aa-4c06-4ac4-a6ce-1f4f9f97a0e7