PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure of calcium sulfoaluminate mortar with basalt additive at elevated temperature

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Mikrostruktura zaprawy z cementu wapniowo-siarczano-glinianowego z wypełniaczem bazaltowym w wysokich temperaturach
Języki publikacji
EN
Abstrakty
EN
This article is motivated by ensure the fire safety of the building and deeper understanding on special cements under elevated temperature loads. Knowledge about influence of high temperatures on calcium sulfoaluminate cement (CSA) based materials has crucial impact on ensuring the fire safety of the buildings. CSA based composites are dedicated to special usage in demanding infrastructure constructions. As there is no or insufficient evidence on the influence of heat on calcium sulfoaluminate materials, this article is motivated to extend current literature knowledge on CSA microstructures at higher temperatures up to 800°C. Recognising the effect of high temperature is particularly important given the significant differences between CSA and Ordinary Portland Cement (OPC). Evidence shows influence of mixture proportion on composite structure, filler-matrix bond, and matrix behaviour during temperature exposure. Obtained results might help in understanding phenomena occurring within material under temperature load and determine next research directions in this area.
PL
Artykuł ten jest motywowany zapewnieniem bezpieczeństwa pożarowego budynków oraz głębszym zrozumieniem specjalnych cementów pod obciążeniem temperaturowym. Wiedza na temat wpływu wysokich temperatur na materiały na bazie cementu wapniowo-siarczano-glinianowego (CSA) jest kluczowa dla zapewnienia bezpieczeństwa pożarowego. Kompozyty na bazie CSA są przeznaczone do specjalnego zastosowania w wymagających konstrukcjach infrastrukturalnych. Ponieważ brakuje badań na temat wpływu ciepła na materiały na bazie CSA, niniejszy artykuł ma na celu poszerzenie aktualnej wiedzy literaturowej na temat mikrostruktur tych materiałów w temperaturach do 800°C. Rozpoznanie wpływu wysokiej temperatury jest szczególnie ważne, biorąc pod uwagę znaczące różnice między CSA a zwykłym cementem portlandzkim (OPC). Artykuł ten wskazuje na wpływ proporcji mieszanki na strukturę kompozytu, wiązanie wypełniacz-matryca i zachowanie matrycy podczas ekspozycji na temperaturę. Uzyskane wyniki mogą pomóc w zrozumieniu zjawisk zachodzących w materiale pod obciążeniem temperaturowym oraz określić dalsze kierunki badań.
Słowa kluczowe
Rocznik
Strony
591--605
Opis fizyczny
Bibliogr. 28 poz., il., tab.
Twórcy
  • Hydro Building Systems Poland, R&D Departament, Lodz, Poland
  • Lodz University of Technology, Institute of Materials Science and Engineering, Lodz, Poland
autor
  • Lodz University of Technology, Department of Building Physics and Sustainable Design, Lodz, Poland
  • Lodz University of Technology, Institute of Materials Science and Engineering, Lodz, Poland
Bibliografia
  • [1] K. Zima, “Integrated analysis of costs and amount of greenhouse gases emissions during the building lifecycle”, Archives of Civil Engineering, vol. 67, no. 2, pp. 413-423, 2021, doi: 10.24425/ace.2021.137176.
  • [2] L. Coppola, D. Coffetti, E. Crotti, G. Gazzaniga, and T. Pastore, “An Empathetic Added Sustainability Index (EASI) for cementitious based construction materials”, Journal of Cleaner Production, vol. 220, pp. 475-482, 2019, doi: 10.1016/j.jclepro.2019.02.160.
  • [3] F. Winnefeld, M. Ben Haha, and B. Lothenbach, “Hydration mechanisms of calcium sulfoaluminate cements assessed by scanning electron microscopy and thermodynamic modelling”, presented at the 13th International Congress on the Chemistry of Cement, 3-8 July 2011, pp. 1-7, Madrit, Spain, 2011.
  • [4] HEIDELBERG CEMENT Group, Vademecum Technologa Betonu. p. 3, 2017.
  • [5] W. Tur and M. Król, Beton ekspansywny. Arkady, 1999.
  • [6] J. Kaufmann, F. Winnefeld, and B. Lothenbach, “Stability of ettringite in CSA cement at elevated temperatures”, Advances in Cement Research, vol. 28, no. 4, pp. 251-261, 2016, doi: 10.1680/jadcr.15.00029.
  • [7] B. Chen, K. Johannes, M. Horgnies, V. Morin, and F. Kuznik, “Characterization of an ettringite-based thermochemical energy storage material in an open-mode reactor”, Journal of Energy Storage, vol. 33, art. no. 102159, 2021, doi: 10.1016/j.est.2020.102159.
  • [8] K.A. Sodol, Ł. Kaczmarek, and J. Szer, “Fire-temperature influence on Portland and calcium sulfoaluminate blend composites”, Materials, vol. 13, no. 22, pp. 1-16, 2020, doi: 10.3390/ma13225230.
  • [9] I. Hager, T. Tracz, M. Choińska, and K. Mróz, “Effect of cement type on the mechanical behavior and permeability of concrete subjected to high temperatures”, Materials, vol. 12, no. 18, 2019, doi: 10.3390/ma12183021.
  • [10] I. Hager, “Behaviour of cement concrete at high temperature”, Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 61, no. 1, pp. 145-154, 2013, doi: 10.2478/bpasts-2013-0013.
  • [11] I. Hager, T. Tracz, J. Śliwiński, and K. Krzemień, “The influence of aggregate type on the physical and mechanical properties of high-performance concrete subjected to high temperature”, Fire and Materials, vol. 40, no. 5, pp. 668-682, 2016, doi: 10.1002/fam.2318.
  • [12] J.J.K. Tchekwagep, P. Zhao, S. Wang, S. Huang, and X. Cheng, “The impact of changes in pore structure on the compressive strength of sulphoaluminate cement concrete at high temperature”, Materials Science-Poland, vol. 39, no. 1, pp. 75-85, 2021, doi: 10.2478/msp-2021-0006.
  • [13] D. Gawin, F. Pesavento, and B.A. Schrefler, “What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model”, International Journal of Solids and Structures, vol. 48, no. 13, pp. 1927-1944, 2011, doi: 10.1016/j.ijsolstr.2011.03.004.
  • [14] J.J.K. Tchekwagep, S. Wang, A.K. Mukhopadhyay, S. Huang, and X. Cheng, “Strengths of sulfoaluminate cement concrete and ordinary Portland cement concrete after exposure to high temperatures”, Ceramics-Silikáty, vol. 64, no. 2, pp. 227-238, 2020, doi: 10.13168/cs.2020.0012.
  • [15] J.J.K. Tchekwagep, Y. Fengzhen, S. Wang, P. Zhao, S. Huang, and X. Cheng “Analysis of the phases and functions of the various compounds of calcium sulfoaluminate cement after exposure to high temperature”, Journal of Materials Research and Technology, vol. 25, pp. 4154-4170, 2023, doi: 10.1016/j.jmrt.2023.06.215.
  • [16] N.C. Collier, “Transition and decomposition temperatures of cement phases – a collection of thermal analysis data”, Ceramics – Silikáty, vol. 60, no. 4, pp. 338-343, 2016, doi: 10.13168/cs.2016.0050.
  • [17] K.A. Sodol, Ł. Kaczmarek, J. Szer, S. Miszczak, and M. Stegliński “Impact of Elevated Temperatures on Strength roperties and Microstructure of Calcium Sulfoaluminate Paste Impact of Elevated Temperatures on Strength Properties and Microstructure of Calcium Sulfoaluminate Paste”, Materials, vol. 14, no. 22, art. no. 6751, 2021, doi: 10.3390/ma14226751.
  • [18] A. Biró and É. Lublóy, “Classification of aggregates for fire”, Construction and Building Materials, vol. 266, Part A, 2021, doi: 10.1016/j.conbuildmat.2020.121024.
  • [19] G.A. Khoury, Effect of Heat on Concrete. London, 1995.
  • [20] P.Wyszomirski and L. Stoch, Surowce i technologia hutnictwa skalnego.Warszawa: Wydawnictwo Geologiczne, 1976.
  • [21] P. Wyszomirski, T. Szydłak, and T. Zawadzki, „The basaltic raw materials from the Rutki and Ligota Tułowicka deposits (Opole Province) and the directions of their possible use”, Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią Polskiej Akademii Nauk, no. 100, pp. 295-312, 2017.
  • [22] H. Zhang, T. Ji, et al., “Modifying recycled aggregate concrete by aggregate surface treatment using sulphoaluminate cement and basalt powder”, Construction and Building Materials, vol. 192, pp. 526-537, 2018, doi: 10.1016/j.conbuildmat.2018.10.160.
  • [23] J.J.K. Tchekwagep, Z. Wang, S. Wang, S. Huang, and X. Cheng, “The influence of different fine aggregate and cooling regimes on the engineering properties of sulphoaluminate cement mortar after heating”, Case Studies in Construction Materials, vol. 18, 2023, doi: 10.1016/j.cscm.2023.e01866.
  • [24] J.J.K. Tchekwagep, Z. Wang, Y. Fengzhen, et al., "The ability of different types of sand to preserve the integrity of calcium sulfoaluminate cement cement mortar during exposure to elevated temperatures", Materials Science-Poland, vol. 40, no. 4, pp. 64-77, 2022, doi: 10.2478/msp-2022-0044.
  • [25] M. Sundin, H. Hedlund, and A. Cwirzen, “Eco-Concrete in High Temperatures”, Materials, vol. 16, no. 12, art. no. 4212, 2023, doi: 10.3390/ma16124212.
  • [26] Institute of Mechanised Construction and Rock Mining, Research protocol, ‘13985/NL/R/17’, 2017, [unpublished].
  • [27] P. Wyszomirski and T. Szydłak, “Fine grain fraction from basalt processing and their usefulness in ceramics”, Mining Science – Mineral Aggregates, vol. 23, no. 1, pp. 201-213, 2016, doi: 10.5277/mscma1622319.
  • [28] Y. Wen, X. Wen, J. Chen, J. Kuang, Q. Tang, Y. Tian, J. Fu, W. Huang, and T. Qiu, “Preparation of Direct Reduced Iron and Titanium Through Carbothermic Reduction-Magnetic Separation”, Materials, vol. 7, no. 11, pp. 1-10, 2017, doi: 10.3390/min7110220.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42654174-3f2b-41f1-a367-33c35fbb0da7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.