PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance of the polyurea‑coated steel tank under air blast load: a numerical study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Steel tanks are used in industries for several purposes, such as the storage of chemicals, water, oil, petroleum products, etc. These steel tanks are frequently exposed to internal explosions due to flammable vapor clouds and external explosives. Generally, two types of blast loads are identified, including surface blast load and air blast load. The air blast load is classified into cylindrical and spherical charges. This study attempted the air blast load mitigation of steel tanks using polyurea coating. A numerical model was developed to evaluate the response of the steel tank under air blast load in terms of internal energy, kinetic energy, strain energy, von-Mises stress, normalized base shear, and side overpressure response. In this regard, two different thicknesses (3.5 and 4.0 mm) of the polyurea coating were used. The model was successfully validated utilizing the previous experimental data. The numerical results indicated that the blast mitigation of steel tanks was effectively enhanced by applying the polyurea coating. In addition, the blast resistance increased with the increase in the thickness of the coating, where a reduction of 70% and 72% in displacements under different air blast loads were observed at the polyurea layer's thicknesses of 3.5 and 4.0 mm, respectively.
Rocznik
Strony
art. no. e8, 2023
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Civil Engineering, SJB Institute of Technology, Bangalore, Karnataka, India
  • Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Department of Civil and Environmental Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
  • Interdisciplinary Research Center for Construction and Building Materials, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Bibliografia
  • 1. Atkinson G, Cowpe E, Halliday J, Painter D. A review of very large vapour cloud explosions: cloud formation and explosion severity. J Loss Prev Process Ind. 2017;48:367-75. https://doi.org/10.1016/j.jlp.2017.03.021.
  • 2. The New York Times:. Thousands evacuated in Texas after explosion at port neches chemical plant; 2019.
  • 3. Chen C, Wang X, Hou H, Cheng Y, Zhang P, Liu J. Effect of strength matching on failure characteristics of polyurea coated thin metal plates under localized air blast loading: Experiment and numerical analysis. Thin-Wall Struct. 2020;154: 106819. https://doi.org/10.1016/j.tws.2020.106819.
  • 4. Wu G, Wang X, Ji C, Liu Q, Gao Z, Zhang K, Zhao C. Experimental and numerical simulation study on polyurea-coated fuel tank subjected to combined action of blast shock waves and fragments. Thin-Wall Struct. 2021;169: 108436. https://doi.org/10.1016/j.tws.2021.108436.
  • 5. Ameijeiras MP, Godoy LA. Simplified analytical approach to evaluate the nonlinear dynamics of elastic cylindrical shells under lateral blast loads. Lat Am J Solids Struct. 2016;13:1281-98. https://doi.org/10.1590/1679-78252 587.
  • 6. Misuri A, Antonioni G, Cozzani V. Quantitative risk assessment of domino effect in Natech scenarios triggered by lightning. J Loss Prev Process Ind. 2020;64: 104095. https://doi.org/10.1016/j.jlp.2020.104095.
  • 7. Ding L, Khan F, Ji J. A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities. Reliab Eng Syst Saf. 2022;217: 108081. https://doi.org/10.1016/j.ress.2021.108081.
  • 8. Ovidi F, Zhang L, Landucci G, Reniers G. Agent-based model and simulation of mitigated domino scenarios in chemical tank farms. Reliab Eng Syst Saf. 2021;209: 107476. https://doi.org/10.1016/j.ress.2021.107476.
  • 9. Tugnoli A, Scarponi GE, Antonioni G, Cozzani V. Quantitative assessment of domino effect and escalation scenarios caused by fragment projection. Reliab Eng Syst Saf. 2022;217: 108059. https://doi.org/10.1016/j.ress.2021.108059.
  • 10. Ibitayo O, Mushkatel A, Pijawka K. Social and political amplification of technological hazards: the case of the PEPCON explosion. J Hazard Mater. 2004;114:15-25. https://doi.org/10.1016/j.jhazmat.2004.08.020.
  • 11. Zio E, Aven T. Industrial disasters: extreme events, extremely rare. Some reflections on the treatment of uncertainties in the assessment of the associated risks. Process Saf Environ Prot. 2013;91:31-45. https://doi.org/10.1016/j.psep.2012.01.004.
  • 12. Damle S, Mani SK, Balamurugan G. Natech guide words: a new approach to assess and manage natech risk to ensure business continuity. J Loss Prev Process Ind. 2021. https://doi.org/10.1016/j.jlp.2021.104564.
  • 13. Araki Y, Hokugo A, Pinheiro ATK, Ohtsu N, Cruz AM. Explosion at an aluminum factory caused by the July 2018 Japan floods: investigation of damages and evacuation activities. J Loss Prev Process Ind. 2021;69: 104352. https://doi.org/10.1016/j.jlp.2020.104352.
  • 14. Suarez-Paba MC, Cruz AM. A paradigm shift in Natech risk management: development of a rating system framework for evaluating the performance of industry. J Loss Prev Process Ind. 2022;74: 104615. https://doi.org/10.1016/j.jlp.2021.104615.
  • 15. Bahraq AA, Al-Osta MA, Khan MI, Ahmad S. Numerical and analytical modeling of seismic behavior of beam-column joints retrofitted with ultra-high performance fiber reinforced concrete. Structures. 2021;32:1986-2003. https://doi.org/10.1016/j.istruc.2021.04.004.
  • 16. Grisaro HY, Edri IE. Numerical investigation of explosive bare charge equivalent weight. Int J Prot Struct. 2017;8:199-220. https://doi.org/10.1177/2041419617700256.
  • 17. Xiao W, Andrae M, Gebbeken N. Experimental and numerical investigations of shock wave attenuation effects using protective barriers made of steel posts. J Struct Eng. 2018;144:04018204. https://doi.org/10.1061/(asce)st.1943-541x.0002194.
  • 18. Xu S, Wen H, Liu B, Guedes SC. Experimental and numerical analysis of dynamic failure of welded aluminium alloy plates under air blast loading. Ships Offshore Struct. 2020. https://doi.org/10.1080/17445302.2020.1835076.
  • 19. Li S, Yu B, Karagiozova D, Liu Z, Lu G, Wang Z. Experimental, numerical, and theoretical studies of the response of short cylindrical stainless steel tubes under lateral air blast loading. Int J Impact Eng. 2019;124:48-60. https://doi.org/10.1016/j.ijimpeng.2018.10.004.
  • 20. Curry RJ, Langdon GS. The effect of explosive charge backing in close-proximity air-blast loading. Int J Impact Eng. 2021;151: 103822. https://doi.org/10.1016/j.ijimpeng.2021.103822.
  • 21. Chung Kim Yuen S, Nurick GN, Langdon GS, Iyer Y. Deformation of thin plates subjected to impulsive load: part III-an update 25 years on. Int J Impact Eng. 2017;107:1339-51. https://doi.org/10.1016/j.ijimpeng.2016.06.010.
  • 22. Curry RJ, Langdon GS. Transient response of steel plates subjected to close proximity explosive detonations in air. Int J Impact Eng. 2017;102:102-16. https://doi.org/10.1016/j.ijimpeng.2016.12.004.
  • 23. Remennikov A, Ngo T, Mohotti D, Uy B, Netherton M. Experimental investigation and simplified modeling of response of steel plates subjected to close-in blast loading from spherical liquid explosive charges. Int J Impact Eng. 2017;101:78-89. https://doi.org/10.1016/j.ijimpeng.2016.11.013.
  • 24. Xiao W, Andrae M, Gebbeken N. Effect of charge shape and initiation configuration of explosive cylinders detonating in free air on blast-resistant design. J Struct Eng. 2020;146:04020146. https://doi.org/10.1061/(asce)st.1943-541x.0002694.
  • 25. Hu Y, Chen L, Fang Q, Xiang H. Blast loading model of the RC column under close-in explosion induced by the double-end-initiation explosive cylinder. Eng Struct. 2018;175:304-21. https://doi.org/10.1016/j.engstruct.2018.08.013.
  • 26. Shin J, Whittaker AS, Cormie D. TNT equivalency for overpressure and impulse for detonations of spherical charges of high explosives. Int J Prot Struct. 2015;6:567-79. https://doi.org/10.1260/2041-4196.6.3.567.
  • 27. Chen G, Zhang P, Liu J, Cheng Y, Wang H. Experimental and numerical analyses on the dynamic response of aluminum foam core sandwich panels subjected to localized air blast loading. Mar Struct. 2019;65:343-61. https://doi.org/10.1016/j.marstruc.2019.02.005.
  • 28. Johnson C, Mulligan P, Williams K, Langenderfer M, Heniff J. Effect of explosive charge geometry on shock wave propagation. In: AIP Conference Proceedings, Vol. 1979. No. 1. AIP Publishing LLC. 2018.
  • 29. Iqbal N, Sharma PK, Kumar D, Roy PK. Protective polyurea coatings for enhanced blast survivability of concrete. Constr Build Mater. 2018;175:682-90. https://doi.org/10.1016/j.conbuildmat.2018.04.204.
  • 30. Gauch E, LeBlanc J, Shukla A. Near field underwater explosion response of polyurea coated composite cylinders. Compos Struct. 2018;202:836-52. https://doi.org/10.1016/j.compstruct.2018.04.048.
  • 31. Wang J, Ren H, Wu X, Cai C. Blast response of polymer-retrofitted masonry unit walls. Compos Part B Eng. 2017;128:174-81. https://doi.org/10.1016/j.compositesb.2016.02.044.
  • 32. Ullah A, Ahmad F, Jang HW, Kim SW, Hong JW. Review of analytical and empirical estimations for incident blast pressure. KSCE J Civ Eng. 2017;21:2211-25. https://doi.org/10.1007/s12205-016-1386-4.
  • 33. Iqbal N, Kumar D, Roy PK. Understanding the role of isocyanate dilution toward spraying of polyurea. J Appl Polym Sci. 2018;135:45869. https://doi.org/10.1002/app.45869.
  • 34. Huang W, Yang Y, Li H, Lyu P, Zhang R. Characterization and damping property of a modified polyurea material. DEStech Trans Mater Sci Eng. 2017. https://doi.org/10.12783/dtmse/ictim2017/9926.
  • 35. Gardner N, Wang E, Kumar P, Shukla A. Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Exp Mech. 2012;52:119-33. https://doi.org/10.1007/s11340-011-9517-9.
  • 36. Li C, Lua J. A hyper-viscoelastic constitutive model for polyurea. Mater Lett. 2009;63:877-80. https://doi.org/10.1016/j.matlet.2009.01.055.
  • 37. Qiao J, Amirkhizi AV, Schaaf K, Nemat-Nasser S, Wu G. Dynamic mechanical and ultrasonic properties of polyurea. Mech Mater. 2011;43:598-607. https://doi.org/10.1016/j.mechmat.2011.06.012.
  • 38. Hui T, Oskay C. Computational modeling of polyurea-coated composites subjected to blast loads. J Compos Mater. 2012;46:2167-78. https://doi.org/10.1177/0021998311430160.
  • 39. Hou H, Chen C, Cheng Y, Zhang P, Tian X, Liu T, Wang J. Effect of structural configuration on air blast resistance of polyurea-coated composite steel plates: experimental studies. Mater Des. 2019;182: 108049. https://doi.org/10.1016/j.matdes.2019.108049.
  • 40. Haris A, Lee HP, Tan VBC. An experimental study on shock wave mitigation capability of polyurea and shear thickening fluid based suspension pads. Def Technol. 2018;14:12-8. https://doi.org/10.1016/j.dt.2017.08.004.
  • 41. Dai LH, Wu C, An FJ, Liao SS. Experimental investigation of polyurea-coated steel plates at underwater explosive loading. Adv Mater Sci Eng. 2018;2018:1-7. https://doi.org/10.1155/2018/1264276.
  • 42. Jiang Y, Zhang B, Wei J, Wang W. Study on the impact resistance of polyurea-steel composite plates to low velocity impact. Int J Impact Eng. 2019;133: 103357. https://doi.org/10.1016/j.ijimpeng.2019.103357.
  • 43. Jiang Y, Zhang B, Wang L, Wei J, Wang W. Dynamic response of polyurea coated thin steel storage tank to long duration blast loadings. Thin-Wall Struct. 2021;163: 107747. https://doi.org/10.1016/j.tws.2021.107747.
  • 44. Jiang Y, Zhang B, Wei J, Wang W. Study on the dynamic response of polyurea coated steel tank subjected to blast loadings. J Loss Prev Process Ind. 2020;67: 104234. https://doi.org/10.1016/j.jlp.2020.104234.
  • 45. Johnson GJ, W.H. Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proc. 7th Inf. Sympo. Ballistics. 1958. pp. 541-547.
  • 46. Amirkhizi AV, Isaacs J, McGee J, Nemat-Nasser S. An experimentally-based viscoelastic constitutive model for polyurea, including pressure and temperature effects. Philos Mag. 2006;86:5847-66. https://doi.org/10.1080/14786430600833198.
  • 47. Kiran KK, Noroozinejad FE. Blast demand estimation of RC-moment- resisting frames using a proposed multi-modal adaptive pushover analysis procedure. Int J Eng. 2021. https://doi.org/10.5829/ije.2021.34.01a.06.
  • 48. Knock C, Davies N. Predicting the peak pressure from the curved surface of detonating cylindrical charges. Propell Explos Pyrotech. 2011;36:203-9. https://doi.org/10.1002/prep.201000001.
  • 49. Hyde H. Conventional weapons effects program. US Waterways Experimental Station, Vicksburg. 1991.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42648010-5538-44e5-8620-8d17c00acdee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.