PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The characteristics of the operating parameters of the vertical axis wind turbine for the selected wind speed

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of examining a wind turbine on the vertical axis of rotation. The study was conducted in an open circuit wind tunnel Gunt HM 170 in the laboratory of the Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems at Lublin University of Technology. The subject of research was a rotor based on the patent PL 219985, with blades capable of altering the surface of the active area (receiving kinetic energy of the wind). The study was performed on appropriately scaled and geometrically similar models maintaining, relevant to the type of research, the criterion numbers. The studied rotors with different blade inclination angles were produced using a 3D powder printer ZPrinter® 450. The results of the conducted research were obtained for the flow velocity of 6.5 m/s and three inclination angles, 30°, 60°, and 90°, at variable rotational speed. The test equipment used in the study allows maintaining the required speed, recording velocity and torque, which in turn allows an engineer to measure such characteristics of torque and power as a function of rotor speed.
Słowa kluczowe
Twórcy
autor
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
autor
  • Department of Thermodynamics, Fluid Mechanics and Aviation Propulsion Systems, Faculty of Mechanical Engineering, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland
Bibliografia
  • 1. Al-Bahadly I. Wind Turbines. Springer- Verlag Berlin Heidelberg 2012.
  • 2. Arroyo A, Manana M, Gomez C, Fernandez I, Delgado F, Zobaa AF. A methodology for the low-cost optimisation of small wind turbine performance. Appl Energy 2013;104:1–9.
  • 3. Boczar T. Energertyka wiatrowa – aktualne możliwości I wykorzystania. Wydawnictwo PAK, W-wa 2008.
  • 4. Chehouri A, Younes R, Ilinca A, Perron J. Review of performance optimization techniques applied to wind turbines. Applied Energy 142 (2015) 361–388.
  • 5. Czyż Z, Kamiński Z. Badania symulacyjne wirnika turbiny wiatrowej o regulowanej powierzchni roboczej. Nowe trendy w naukach inżynieryjnych 3, Redakcja: dr. inż. M. Kuczera,Tom II, Creative Science, Monografia 2012, Creativetime, Kraków 2012, strony 243 – 251.
  • 6. Czyż Z, Kamiński Z. Badania wirnika turbiny wiatrowej o regulowanym położeniu łopat roboczych. Młodzi naukowcy dla polskiej nauki. Cz.7: Nauki inżynieryjne. T. 1; Redakcja: Kuczera Marcin - Kraków: 2012, s. 189-195.
  • 7. Diveux T, Sebastian P, Bernard D, Puiggali J, Grandidier J. Horizontal axis wind turbine systems: optimization using genetic algorithms. Wind Energy 2001; 4:151–71.
  • 8. Eke G, Onyewudiala J. Optimization of wind turbine blades using genetic algorithm. Global J Res Eng 2010:10.
  • 9. Elsevier BV. <http://www.scopus.com/source/eval. url>. Scopus Journal Analyzer; 2014.
  • 10. Flaga A. Siłownie wiatrowe, Wydawnictwo PK, Kraków 2012.
  • 11. Fuglsang P, Aagaard Madsen H. Numerical optimization of wind turbine rotors. In: 1996 European wind energy conference and exhibition; 1996. p. 679–82.
  • 12. Fuglsang P, Bak C, Schepers J, Bulder B, Cockerill T, Claiden P, et al. Site specific design optimization of wind turbines of 1.5–2.0 MW wind turbines. Wind Energy 2002;5:261–79.
  • 13. Fuglsang P, Madsen HA. Optimization method for wind turbine rotors. J Wind Eng Ind Aerod 1999; 80:191–206.
  • 14. Giguere P, Selig MS. Blade geometry optimization for the design of wind turbine rotors. In: Proceedings of AIAA/ASME wind energy symposium. Reno (Nevada); 2000.
  • 15. Giguère P, Tangler J, Selig M. Blade design trade-offs using low-lift airfoils for stall-regulated HAWTs. J SolEnergy Eng 1999;121:217–23.
  • 16. Gumuła S. i in. Energetyka wiatrowa, Uczelniane Wydawnictwa Naukowo- Dydaktyczne, Kraków 2006.
  • 17. Hendriks H, Schepers G, Engelen Tv, Stern A, Boerstra G. Aeroelastically optimised cost efficient wind turbine: a case study. Netherlands Energy Research Foundation ECN; 1996.
  • 18. Jastrzębska G. Odnawialne źródła energii i pojazdy proekologiczne. WNT, Warszawa 2009.
  • 19. Jagodziński W. Silniki wiatrowe. PWT, Warsza¬wa 1959.
  • 20. Katalog Fluid mechanics & hydrology, G.U.N.T. Geratebau GmbH, Hamburg, 2010.
  • 21. Katalog produktów TENMEX Pracownia Tensometrii Elektrooporowej, S.C., Łódź,2015.
  • 22. Kenway G, Martins J. Aerostructural shape optimization of wind turbine blades considering site-specific winds. In: Proc of 12th AIAA/ISSMO multidisciplinary analysis and optimization conference. Victoria (British Columbia, Canada Toronto, Ontario, Canada): University of Toronto Institute for Aerospace Studies; 2008.
  • 23. Lewandowski W. Proekologiczne odnawialne źródła energii. WNT, Warszawa 2010.
  • 24. Maki K, Sbragio R, Vlahopoulos N. System design of a wind turbine using a multi-level optimization approach. Renew Energy 2012;43:101–10.
  • 25. Manwell JF, McGowan JG, Rogers AL. Wind energy explained, 1st ed. Amherst, USA: Wiley; 2002.
  • 26. National Instruments, http//:www.sine.ni.com.
  • 27. Ning A, Damiani R, Moriarty P. Objectives and constraints for wind turbine optimization. In: 31st ASME wind energy symposium; 2013.
  • 28. Świsulski D. Komputerowa technika pomiarowa. Oprogramowanie wirtualnych przyrządów pomiarowych w LabView. Agenda Wydawnicza PAK, Warszawa 2005.
  • 29. Sandra Eriksson, Hans Bernhoff, Mats Leijon. Evaluation of different turbine concepts for wind power. Renewable and Sustainable Energy Reviews 12 (2008) 1419–1434.
  • 30. Travis J. LabView for Everyone. Prentice-Hall, Upper Saddle River 2002.
  • 31. Wendeker M, Kamiński Z, Czyż Z. Urząd Patentowy RP nr: P.402214, 2012.
  • 32. Wolańczyk F. Elektrownie wiatrowe, Wydawnictwo KaBe, Krosno 2009.
  • 33. Wood D. Small wind Turbines- Analysis, design and Application, Springer- Verlag London Limited 2011.
  • 34. Xudong W, Shen WZ, Zhu WJ, Sorensen JN, Jin C. Blade optimization for wind turbines. In: European wind energy conference & exhibition EWEC; 2009.
  • 35. Xudong W, Shen WZ, Zhu WJ, Sorensen JN, Jin C. Shape optimization of wind turbine blades. Wind Energy 2009; 12:781–803.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4263d5ac-1ac1-4858-b19b-cdbfec3af58e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.