PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of dispersants on coal slime classification in a novel classification apparatus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effects of the dispersants NaOH and Na2CO3 on the classification of coal slimes was studied in a novel classification apparatus. A dispersion effect was characterized through slurry pH and transmittance measurements as well as zeta potential determinations of the slimes. The pH increased and the zeta potential became more negative, while the transmittance decreased with the increase in the NaOH and Na2CO3 addition. The miscellany rates in the overflow decreased by 15.18% and 11.22% with NaOH and Na2CO3, respectively, while that in the underflow was 31.81% and 27.08%, respectively. An ash-removal efficiency from the coal slurries increased by 20.03% and 10.50% with NaOH and Na2CO3, respectively. It was found that the largest difference in classification efficiency between these dispersants in the overflow was 26.05% and underflow was 14.86%. At the high classification efficiency, the transmittance of the slurry decreased, indicating that better dispersion effect led to the higher classification efficiency of the coal slurry. NaOH showed to be a better dispersant for coal slimes classification than Na2CO3 in the novel classification apparatus.
Rocznik
Strony
336--345
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
  • Surface chemitry lab, Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 550, San Luis Potosi, SLP 78210, Mexico
  • Surface chemitry lab, Instituto de Metalurgia, Universidad Autonoma de San Luis Potosi, Av. Sierra Leona 550, San Luis Potosi, SLP 78210, Mexico
autor
  • School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
autor
  • School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, 232001, China
Bibliografia
  • ALAM, N., OZDEMIR, O., HAMPTON, M. A., NGUYEN, A. V., 2011. Dewatering of coal plant tailings: Flocculation followed by filtration. Fuel., 90 (1), 26–35.
  • AYHAN, F. D., ABAKAY, H., SAYDUT, A., 2005. Desulfurization and deashing of Hazro coal via a flotation method. Energ. Fuel., 19 (3), 1003–1007.
  • FENG, L., LIU, J. T., ZHANG, M. Q., SONG, L. L., 2010. Analysis on influencing factors of sedimentation characteristics of coal slime water. J. China U. Min. Techno., 39 (5), 671–675
  • GAHLOT, V. K., SESHADRI, V., MALHOTRA, R. C., 1992. Effect of density, size distribution, and concentration of solid on the characteristics of centrifugal pumps. J. Fluid. Eng., 114 (3), 386–389.
  • GUI, X. H., XING, Y. W., RONG, G. Q., CAO, Y. J., LIU, J. T., 2016. Interaction forces between coal and kaolinite particles measured by atomic force microscopy. Powder. Technol., 301, 349–355.
  • HENRIST, C., MATHIEU, J. P., VOGELS, C., RULMONT, A., CLOOTS, R., 2003. Morphological study of magnesium hydroxide nanoparticles precipitated in dilute aqueous solution. J. Cryst. Growth., 249 (1), 321–330.
  • HONAKER, R. Q., OZSEVER, A. V, SINGH, N., PAREKH, B. K., 2001. Apex water injection for improved hydrocyclone classification efficiency. Miner. Eng., 14 (11), 1445–1457.
  • JENA, M. S., BISWAL, S. K., RUDRAMUNIYAPPA, M. V., 2008. Study on flotation characteristics of oxidised Indian high ash sub-bituminous coal. Int. J. Miner. Process., 87 (1), 42–50.
  • KIM, B. H., KLIMA, M. S., 2004. Development and application of a dynamic model for hindered-settling column separations. Miner. Eng., 17 (3), 403–410.
  • KOCA, S., SAVAS, M., KOCA, H., 2003. Flotation of colemanite from realgar. Miner. Eng., 16 (5), 479–482.
  • LEE, C. T. A., MORTON, D. M., FARNER, M. J., MOITRA, P., 2015. Field and model constraints on silicic melt segregation by compaction/hindered settling: The role of water and its effect on latent heat release. Am. Mineral., 100 (8-9), 1762–1777.
  • LI, Y. F., ZHAO, W. D., GUI, X. H., ZHANG, X. B., 2013. Flotation kinetics and separation selectivity of coal size fractions. Physicochem. Probl. Mi., 49 (2). 387–395.
  • MALEKSAEEDI, S., PAYDAR, M. H., MA, J., 2010. Centrifugal gel casting: a combined process for the consolidation of homogenous and reliable ceramics. J. Am. Ceram. Soc., 93 (2), 413–419.
  • MILNE, I. H., EARLEY, J. W., 1958. Effect of source and environment on clay minerals. Am. Assoc. Petrol. Geologist. Bull., 42 (2), 328–338.
  • MIN, F. F., PENG, C. L., LIU, L. Y., 2015. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions. Powder. Technol., 283, 368–372.
  • NI, C., XIE, G. Y., JIN, M. G., PENG, Y. L., XIA, W. C., 2016. The difference in flotation kinetics of various size fractions of bituminous coal between rougher and cleaner flotation processes. Powder. Technol., 292, 210–216.
  • OZKAN, S. G., 2017. Further investigations on simultaneous ultrasonic coal flotation. Minerals-Basel., 7(10), 177–185.
  • SABAH, E., CENGIZ, I., 2004. An evaluation procedure for flocculation of coal preparation plant tailings. Water. Res., 38 (6), 1542–1549.
  • SARKAR, B., DAS, A., MEHROTRA, S. P., 2008. Study of separation features in floatex density separator for cleaning fine coal. Int. J. Miner. Process., 86 (1), 40–49.
  • SHIE, J. L., LIN, J. P., CHANG, C. Y., LEE, D. J., WU, C. H., 2003. Pyrolysis of oil sludge with additives of sodium and potassium compounds. Resour. Conserv. Recy., 39 (1), 51–64.
  • SJÖBERG, L. E., 2003. A general model for modifying Stokes’ formula and its least-squares solution. J. Geodesy., 77 (7–8), 459–464.
  • TAKÁCS, I., PATRY, G. G., NOLASCO, D., 1991. A dynamic model of the clarification-thickening process. Water. Res., 25 (10), 1263–1271.
  • TRIPATHY, S. K., BHOJA, S. K., KUMAR, C. R., SURESH, N., 2015. A short review on hydraulic classification and its development in mineral industry. Powder. Technol., 270, 205–220.
  • VIJAYALAKSHMI, S. P., RAICHUR, A. M., 2003. The utility of Bacillus subtilis as a bioflocculant for fine coal. Colloid. Surface. B., 29, 265–275.
  • WANG, X. J., LIU, R. Z., MA, L. Y., QIN, W. Q., JIAO, F., 2016. Depression mechanism of the zinc sulfate and sodium carbonate combined inhibitor on talc. Colloid. Surface. A., 501, 92–97.
  • XING, Y. W., GUI, X. H., CAO, Y. J., 2016. Effect of calcium Ion on coal flotation in the presence of Kaolinite Clay. Energ. Fuel., 30 (2), 1517–1523.
  • XING, Y. W., GUI, X. H., CAO, Y. J., WANG, D., ZHANG, H., 2017. Clean low-rank-coal purification technique combining cyclonic-static microbubble flotation column with collector emulsification. J. Clean. Prod., 153, 657–672.
  • ZHANG, M. Q., LIU, J. T., WANG, Y. T., 2008. Effects of water hardness on the dispersion of fine coal and kaolinite in coal slurry. J. China Coal. Soc., 9, 1058–1063.
  • ZHANG, X., HU, H., 2014. Preparation and analysis of a polyacrylate grinding aid for grinding calcium carbonate (GCC) in an ultrafine wet grinding process. Powder. Technol., 254, 470–479.
  • ZHANG, Y. S., QU, Y. X., WU, S. R., 2001. Engineering geological properties and comprehensive utilization of the solid waste (red mud) in aluminium industry. Environ. Geol., 41 (3–4), 249–256.
  • ZHU, H. Z., LIU, L. Y., ZHU, J. B., MIN, F. F., 2015. Design and numerical simulation of slurry classification pond. J. China Coal. Soc., 40 (8), 1924–1928.
  • ZHU, H. Z., SONG, S. X., LOPEZ-VALDIVIESO, A., ZHU, J. B., WANG, H. N., 2018. Effects of Rectifying Bundles on Desliming Ponds. Int. J. Coal. Prep. Util., 2, 1–10.
  • ZHU, H. Z., ZHU, J. B., MIN, F. F., YU, C. F., WU, D. W., DUAN, Y. L., WANG, M. M., 2013. Study on design and application of flotation feed desliming pond in coal preparation plant. J. China Coal. Soc., 38 (11), 2030–2034.
  • ZOU, L. Z., ZHU, S. Q., WANG, X. L., GUO, X. K., CUI, G. W., 2006. Study on the interaction between different CWS dispersants and coals Ⅺ Interface properties of dispersant-modified coal particles and its effect on the properties of CWS. J. Fuel. Chem. Techno., 34 (2), 160–165.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-425cfe98-4635-4f25-bd38-7c698b101a46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.