
Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 101

Guze Sambor
Maritime University, Gdynia, Poland

Numerical application of the SPEA algorithm to reliability multi-
objective optimization

Keywords

multi-objective optimization, reliability, 0-1 knapsack problem, SPEA

Abstract

The main aim of the paper is the computer-aided multi-objective reliability optimization using the SPEA
algorithm. This algorithm and the binary knapsack problem are described. Furthermore, the computer program
that solves the knapsack problem with accordance to SPEA algorithm is introduced. Example of the possible
application of this program to the multi-objective reliability optimization of exemplary parallel-series system is
shown.

1. Introduction

The technological development requires the use of
more advanced methods and techniques to solve the
engineering problems. This is a result of the fact, that
the technical systems are becoming more complex.
Thus, the problems of designing optimal systems or
finding optimal solutions are met in many areas of
present science, technology and economics. When
we take into account the optimization problem, the
three elements need to be specify: a model of the
phenomenon of distinguished decision variables,
objective functions also known as a quality criterion
and constraints [2], [17]-[18]. This is a classical point
of view on optimization problem. With the reference
to the current state-of-the-art in the reliability and
safety analysis of the technical systems the
increasing of their complexity are noted [4], [6]-[7].
This implies that the improvement of the system [5],
[8]-[9] only in one direction is no longer sufficient.
Therefore, the one-objective optimization [3],
[5]-[7], [12], [14], [16] should be replaced by multi-
objective approach [2], [9], [14],[16]-[19].
Most of the presented results take into account only
one criterion for the optimization. There are the
known methods to the reliability prediction and
optimization of complex technical systems related to
their operation processes, where the time is a
fundamental criterion [3]-[7], [10]. The tools for
solving the problems of complex technical systems
availability, safety and cost optimization [3]-[7] are
also introduced. All of these problems can be solved

by well-known deterministic optimization methods
for engineering and management [12], [14], [16].
These problems are important according to the
critical infrastructures analysis and modelling [1],
[13], too. Because that applies to everyday human
activities, the multi-objective approach to the
improvement operation process, reliability and safety
need to be used. Thus, the proposition of
transformation a reliability optimization problem to
the binary knapsack problem [2], [11], [17]-[19] is
presented in the paper. Furthermore, a possible
application of the computer program to the multi-
criteria reliability optimization of the technical
system is shown. This implements the Strength
Pareto Evolutionary Algorithm [15], [17]-[19],
which is recognized as one of the most effective [17].

2. Concepts of the single and multi-objected
optimization

The basic aim of both approaches to optimization is
to get the solution for minimizing or maximizing
problem. The number of the objective functions is a
fundamental difference. Thus, the definition of the
single-objected optimization problem is following:

 min)(→ixF or max,)(→ixF

 njixxlxl iijij ,...,2,1, ,0 ,0)(,0)(=≥≤≤ (1)

where

Guze Sambor
Numerical application of the SPEA algorithm to reliability multi-objective optimization

 102

ix - decision variables, ni ,...,2,1= ;

)(ixF - goal(objective) function;

)(ij xl - limits function (low or high) for decision

variables, nji ,...,2,1, = .

The solution for above problem is to find the
unknown goal function.

In the other hand, the multi-objective optimization
model can be described as a vector function f that
maps a tuple of m decision variables (parameters) to
a tuple of n objectives functions, and a set of k
constrains. Objective functions and constraints are
functions of the decision variables. The formal
notation is as follows [2], [17]-[18]:

() minor max)(,),(),()(21 →== xxxxfy nfff K

subject to () 0xxxxe ≤=)(,),(),()(21 keee K or

 () ,)(,),(),()(21 0xxxxe ≥= keee K (2)

where

 () ,,,, 21 Xx ∈= mxxx K

 () ,,,, 21 Yy ∈= nyyy K

and x is the decision vector, y is the objective
vector, X is denoted as the decision space andY is
called the objective space.
The constraints 0xe ≤)((0xe ≥)() is described the
set of feasible solution for maximization
(minimization) problems.

The set

 { }0xeXxX ≤∈=)(|f

 { }()0xeXxX ≥∈=)(|f (3)

of decision vectors x that satisfy the constraints

0xe ≤)((0xe ≥)() is called the feasible set for
maximization (minimization) problems. Following
the above, its image, i.e., the feasible region in the
objective space, is denoted as

 U
f

ff
Xx

xfXfY
∈

==)}({)(. (4)

2.1. Introduction to Pareto-optimality

According to above notation, there exist the set of
multi-objective optimization problem solutions. It
consists of all decision vectors for which the
corresponding objective vectors cannot be

improved in any dimension without degradation in
another. They are called Pareto optimal (Pareto
frontier/ Pareto set/ Pareto front), what is related to
the concept of domination vector by vector. It is
simple to explain based on following Definitions 1-4,
[17]-[18].

Definition 1. Let us take into account a maximization
(minimization) problem and consider two decision
vectors ,, X∈ba then a is said to dominate b
(ba f or ba p) if and only if

)()(:},...,2,1{ ba ii ffni >∈∀ ()()(ba ii ff <)

∧
)()(:},...,2,1{ ba jj ffnj >∈∃ ().()(ba jj ff <) (5)

Definition 2. Let us take into account a maximization
(minimization) problem and consider two decision
vectors ,, X∈ba then a is said to weak dominate b
if and only if

)()(:},...,2,1{ ba ii ffni ≥∈∀ ()()(ba ii ff ≤)

 ∧
)()(:},...,2,1{ ba jj ffnj ≥∈∃ ().()(ba jj ff ≤) (6)

Definition 3. Let us take into account a maximization
(minimization) problem and consider two decision
vectors ,, X∈ba then a is said to be indifferent to
b if and only if

)()()()(:},...,2,1{ abba iiii fnotffnotfni ≥∧≥∈∀

 ()()()()(abba iiii fnotffnotf ≤∧≤) (7)

The graphical interpretation of the above definition
are presented in Figure 1.

Figure 1. Possible relation in objective space [17]

According to given relation between the solutions in
objective space (Definitions 1-3), it is possible to
define the Pareto optimality. However, the key issue

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 103

is specifying the concept of non-dominated decision
vector [17]-[18].

Definition 4. A decision vector fXx ∈ is said to be

non-dominated regarding to set fA X⊆ if and only

if

 xaa fAnot ∈∃ . (8)

It means, that all decision vectors which are not
dominated by another decision vector are called non-
dominated. Moreover, the Pareto optimality is
defined as follows [17].

Definition 5. A decision vector x is said to be Pareto
optimal if and only if x is non-dominated regarding

fX .

In the other words, when the decision vectors are
non-dominated within the entire search space, they
are denoted as Pareto optimal or efficient. Its
graphical representation is called Pareto-optimal
front or surface (see Figure 2).

Nondominated solutions –
Pareto Optimal set

Pareto front

Dominated
solutions

OBJECTIVE FUNCTION 1

O
B

JE
C

T
IV

E
 F

U
N

C
T

IO
N

 2

0

Feasible region

Figure 2. Illustrative example of Pareto-optimal front
for minimizing problem

Moreover, when a set of choices and a way of
valuing them are given, the Pareto front is the set of
choices that are Pareto optimal (efficient). Regarding
to the set of choices that are Pareto-optimal a
decision maker can make tradeoffs within this set, in
place of consideration the full range of every
parameter. It means that the shape of the Pareto front
indicates the nature of the trade-off between the
different objective functions.
In language of the statistical decision theory the
above approach can be compare to an admissible
decision rule. It is a rule for making a decision such
that there is not any other rule that is always "better"

than it. In general, the set of admissible rules for
most decision problems is large, sometimes infinite.
Therefore, this is not a sufficient criterion to take into
account a single rule, but should favor admissible
rules. The Pareto-optimality gives a suggestion what
decision maker can consider as optimal (maximal or
minimal).

2.2. Methods and algorithms for multi-
objective optimization

The most frequently used multi-objective analytical
deterministic or non-deterministic optimization
methods are as follows:

− Weighted Objective Methods;
− Hierarchical Optimization Method;
− Trade-Off Method;
− Global Criterion Method;
− Method of Distance Functions;
− Min-Max Methods;
− Goal Programming Method.

The above approaches can provide general tools for
solving optimization problems to obtain a global or
an approximately global optimum. In the second case
the better way to work out is using the evolutionary
or genetic algorithms, such as:

− Strength Pareto Evolutionary Algorithm
(SPEA);

− VEGA – Vector Evaluated Genetic Algortihm;
− HLGA - Hajela and Lin’s Weighting-based

Genetic Algorithm;
− NPGA – Niched Pareto Genetic Algorithm.

General operation of genetic or evolutionary
algorithms is based on the following steps (see
Figure 3):

1. Initialization.
2. Calculate fitness.
3. Selection/Recombination/Mutations (parents

and children).
4. Finished.

The simplified drawing showing the appearance of
the basic genetic algorithm is presented in Figure 3.
The data is represented by population of
chromosomes, where each of them is composed of a
string of bits (see Figure 3).

In the paper the Strength Pareto Evolutionary
Algorithm (SPEA) and its numerical realization [2],
[17]-[18] is considered as a representative
evolutionary algorithm. The basic notations for
correct presentation of it are as follows:
 t - number of generation,

Guze Sambor
Numerical application of the SPEA algorithm to reliability multi-objective optimization

 104

tP - population in generation t,

tP - external set in generation t,

P′ - temporary external set,
P′ - temporary population.

Additionally, the following input parameters are
given:
N - population size,
N - maximum size of external set,
T - maximum number of generations,

cp - crossing probability,

mp - mutation probability,

A- set of non-dominated solutions.

Figure 3. Basic genetic/evolutionary algorithm [16]

The Strength Pareto Evolutionary Algorithm [2],
[15]:

Step 1. Initialization:
The initial population 0P is generated according to
procedure:

a) To get item i.
b) To add item i to set 0P .

Next, the empty external set 0P is generated, where
t = 0.

Step 2. The complement of the external set is done.
Let P′ = tP

a) To copy non-dominated items from

population tP to populationP′ .

b) To remove dominated items from setP′ .
c) To reduce the cardinality of the set P′ to

value N , using clustering and the solution
give into 1+tP .

Step 3. Determination fit function.

The value of the fit function F for items from sets tP

and tP can be found according to following
procedure:
The real value)1,0[∈S is assigned for every item

tPi ∈ (called power). This value is proportional to

number of items tPj ∈ , which represents the
solutions dominated by item i.
The adaptation of item j is calculated as sum of all
items from external set, represents solution
dominated by item j, increased by 1.
The aim of addition 1 is to ensure that items tPi ∈
will have better value of fit function than items from
set tP , i.e.

 ,
1

)(
+

=
N

n
iS (9)

where:

)(iS - power of item i,
n - number of items in population dominated by
item i.

It is assumed that value of fit function for item i is
equal to his power, i.e.

)()(iSiF = . (10)

Step 4. Selection
Let P′ = Ø.
For i = 1,2,… k do

a) To choose randomly two items tt PPji ∪∈, .

b) If)()(jFiF < then }{ iPP ∪′=′ else

}{ jPP ∪′=′ , under assumption that value
of fit is minimizing.

Step 5. Recombination.
Let P ′′ =Ø.
For i = 1,2,…N/2 do:

a) To choose two items Pji ′∈, and to remove

it from P′ .
b) To create items: lk , by crossing the items

ji, .

c) To add items lk , to set P ′′ with probability

cp , else add items ji, to setP ′′ .

Step 6. Mutation
Let P ′′′ =Ø.
For every item Pi ′′∈ do:

a) To create item j by mutation the item i with

probability mp .

Journal of Polish
Summer Safety and Reliability Seminars

b) To add item j to setP ′′′ .

Step 7. Finished
Let PPt

′′′=+1 and 1+= tt . If Tt ≥

non-dominated solution from population
finish else back to Step 2.

The graphical representation of the above
algorithm’s steps is shown in Figure 4

Figure 4. General steps in the SPEA [17

3. The knapsack problem

The knapsack problem has been known
a combinatorial optimization problem. The general
description is based on given a set of items, each
with a mass and a value. There is determined the
number of each item to include in a collection so that
the total weight is less than or equal to a given limit
and the total value is as large as possible (according
to (1)). The knapsack problem is a subset of NP
problems. It means that there is non
algorithm to solve this problem. Therefore, the
knapsack problem has been modified many times.
i.e. to form of the 0-1 knapsack problem. This
modification allows for formulation of knapsack
problem as multi-objective optimization problem.

3.1. The 0-1 knapsack problem –
notations

Generally, a 0-1 knapsack problem consists
of items, weight and profit associated
item, and an upper bound for the
knapsack. The main goal is to find
items which maximizes the profits
items fit into the knapsack, i.e., the total
not exceed the given capacity [2], [11
This single-objective problem can
directly to the multi-objective case
arbitrary number of knapsacks. Formally,
objective 0-1 knapsack problem can be

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

105

 then return A –

dominated solution from population tP and

The graphical representation of the above
Figure 4.

[17]

known since 1897 as
l optimization problem. The general

description is based on given a set of items, each
with a mass and a value. There is determined the
number of each item to include in a collection so that
the total weight is less than or equal to a given limit

total value is as large as possible (according
to (1)). The knapsack problem is a subset of NP-hard
problems. It means that there is non-polynomial
algorithm to solve this problem. Therefore, the

modified many times.
1 knapsack problem. This

for formulation of knapsack
objective optimization problem.

– basic

consists of a set
associated with each

 capacity of the
find a subset of
 and all selected
total weight does
11], [17], [18].

can be extended
 by allowing an

Formally, the multi-
can be defined in

the following way [2],
formula (2):
Given a set of m items and
with

 =jip , profit of item j according to knapsack

 =jiw , weight of item j according to knapsack

 =ic capacity of knapsack

find a vector (,,, 21 xx= Kx

 ∑
=

=∈∀
m

1j

)(:},...,2,1{ ieni x

and for which ()(x ff =
maximum, where

 ∑
=

⋅=
m

1j
ji,p)(ji xf x

and 1=jx if and only if when item

3.2. The 0-1 knapsack problem solutions

The solutions of knapsack problem can be descri
in terms of a genetic or evolutionary methods.
paper, the SPEA algorithm from Section 2.2., is
proposed to solve the problem.
program to find the solution of
problem is implemented in C programm
with using PISA project
Computer Engineering and Networks Laboratory of
ETH Zurich and available on website
http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php
PISA is a text-based interface
It splits an optimization process into two modules.
One module, called the Variator
specific to the optimization problem (e.g.,
knapsack problem). The second
Selector, contains the parts of an optimization
process which are independent of the optimization
problem (mainly the selection process
These two modules are implemented as separate
programs which communicate through text files
presented in Figure 5 [19].

Figure 5. The schema of PISA
[19]

1, 2015

[17], [18] according to

and a set of n knapsacks,

according to knapsack i ,

according to knapsack i ,

capacity of knapsack i ,

) { } ,1,0 m

mx ∈ such that

∑ ≤⋅ji,w ij cx (11)

))(,),(),(21 xxx nfff K is

 (12)

if and only if when item j is chosen.

1 knapsack problem solutions

problem can be described
in terms of a genetic or evolutionary methods. In the
paper, the SPEA algorithm from Section 2.2., is
proposed to solve the problem. The computer

find the solution of the 0-1 knapsack
problem is implemented in C programming language
with using PISA project codes, developed in
Computer Engineering and Networks Laboratory of

available on website
http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php.

based interface for search algorithms.
splits an optimization process into two modules.

Variator, contains all parts
specific to the optimization problem (e.g., 0-1

second module, called the
contains the parts of an optimization
ich are independent of the optimization

problem (mainly the selection process, i.e. SPEA2).
These two modules are implemented as separate
programs which communicate through text files as is

of PISA project components

Guze Sambor
Numerical application of the SPEA algorithm to reliability multi-objective optimization

 106

There are the six text files that are a platform to
exchange of data between the Variator (Knapsack)
and the Selector (SPEA2). According to
documentation of Knapsack module, the most
important in common files is PISA_cfg file that
consists the following parameters:

- alpha - number of individuals in initial
population;

- mu - number of individuals selected as parents;
- lambda - number of offspring individuals;
- dim - number of objectives

Unfortunately there are some limitations to the
Knapsack module. It works only when mu ==
lambda. In the other hand, if an odd number is
chosen for mu and lambda, the last individual in the
mating pool (see Figure 4) can only undergo
mutation, because it has no recombination partner.

Additionally, two files of the parameters for both
programs are available.
In case of the Variator the parameters are as follows:

- seed - seed for random number generator;
- length - length of the binary string (length of the

chromosome);
- maxgen - maximum number of generations (stop

criterion) 5
- outputfile – name of file for output of the last

population in archive, where one individual is
written per line using the following format:
ID (objective 1) (objective 2) ... (objective dim)
bit-vector;

- mutation_type – mutation type, where 0 = no
mutation, 1 = one bit mutation, 2 = independent
bit mutation;

- recombination_type – recombination type,
where 0 = no recombination, 1 = one point
crossover, 2 = uniform crossover;

- mutation_probability – probability that
individual is mutated;

- recombination_probability - probability that two
individuals are recombined;

- bit_turn_probability - probability, that bit is
turned when mutation occurs only used for
independent bit mutation.

For the Selector (SPEA2) the following parameters
are included:

- seed - seed for random number generator;
- tournament - parameter for number of the

tournament selection.

The computer program is implemented with
accordance to formulae (1)-(12).

4. Reliability of the two-state parallel-series
system

In the case of two-state reliability analysis of
parallel-series systems we assume that [2], [4]:

− n is the number of system components,
− ,ijE ,,...,2,1 nki = ,,...,2,1 ilj = are components

of a system,
− ijT are independent random variables

representing the lifetimes of components ,ijE

,,...,2,1 nki = ,,...,2,1 ilj =

−),,0),()(∞∈<>= ttTPtR ijij is a reliability

function of a component ,ijE ,,...,2,1 nki =

,,...,2,1 ilj =

−),,0),()(1)(∞∈<≤=−= ttTPtRtF ijijij is the

distribution function of the component ijE

lifetime ijT , ,,...,2,1 nki = ,,...,2,1 ilj = also

called an unreliability function of a component
,ijE ,,...,2,1 nki = .,...,2,1 ilj =

Moreover, we assume that components ,1iE ,2iE …,

,
iilE ,,...,2,1 nki = create a parallel subsystem ,iS

,,...,2,1 nki = and that these subsystems create a series
system.

Definition 6. A two-state system is called parallel-
series if its lifetime T is given by

 T = }.max{min

11 ij
ljki

T
in ≤≤≤≤

 (13)

According to above definition, the reliability
function of the two-state parallel-series system is
given by

).,(,)(1)(
1 1

,...,,1 ∞−∞∈







−= ∏ ∏

= =

ttFtR
n i

nkn

k

i

l

j
ijjllk (14)

5. 5. Multi-criteria methods for reliability
optimization problem

We assume that the two-state parallel-series system
with three main units iS is given (3,2,1=i). Every
unit is the parallel subsystem consists of maximum
components which can be chosen to provide
redundancy (see Figure 4). These maximal numbers
are equal to:

- 4, for unit 1S ;

- 3, for unit 2S ;

- 3, for unit 3S .

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 107

Figure 6. Exemplary scheme of a parallel-series
system

Every component of the system can have two states,
functioning with the nominal capacity or total failure,
corresponding to capacity 0. The main characteristics
of these components are lifetime and cost. The
exemplary system components are given in Table 1.

Table 1. Exemplary characteristics of the system
components

Subsystem
Component

type
Lifetime

[h]
Cost

[USD]

1

1 350 9899
2 840 11259
3 255 6137
4 190 4122

2
1 198 3818
2 740 10016
3 500 7213

3
1 960 10189
2 180 4991
3 607 15683

In real world application, the main problem can be
formulated as the question how to create new system
or to redesign existing one for extending its time to
failure as much as possible with a cost as low as
possible. It means that the goal of the problem is to
maximize the time to failure of the system and to
minimize the cost. This is the classical two-objective
optimization. The solution of the problem can be
done by a transformation the reliability problem to
the 0-1 knapsack problem. This can be done,
according to the Section 3, when the assumptions are
as follows:

- ic is the time to failure of designed system;

- jip , is the profit equal to lifetime of using

the particular component;
- jiw , is the cost of the component usage and

installation.

Furthermore, let us assume that a chromosome
represents the reliability of whole system. In this
chromosome the gen equal to 1 means that given

component is into knapsack. On the other hand, the
gen in this chromosome is equal to 0 means that this
component is not in knapsack. The exemplary
chromosome of the system is presented in Figure 5.
The length of a chromosome is the number of the
components, which are under investigation (number
of system components, see Figure 7).

Subsystem 1 Subsystem 2 Subsystem 3

1 0 0 0 0 0 1 0 1 0

Component
type 1

Component
type 3

Component
type 3

Figure 7. Exemplary chromosome describes the
system components

The showcase of the possibility usage of the
computer program is presented in Example.

Example
Let us take into account the two-state parallel-series
system with three main units iS , where 3,2,1=i .
Furthermore, the optimization of the time to failure
according to minimal cost is needed to done. There is
the set of components that can be selected to improve
the system reliability.

To solve above problem, the computer program
proposed in Section 3.2. is used according to
formulae (13) – (14). The five cases are considered
for showing the capabilities of this program. In every
case five generations of the algorithm (presented in
Section 2.2.) are taken into account for program
execution.
To use the computer program, the following
parameters for four cases commonly (Case 1-4) in
configure file are fixed. In the case 5 two parameters
are changed.

The input file “PISA_CFG” for cases 1-4 is as
follows:
o alpha 50
o mu 50
o lambda 50
o dim 2

and for case 5 is given as
o alpha 50
o mu 20
o lambda 20
o dim 2

E21

E22

E23 E33

E31

E32

E14

E11

E12

E13

Numerical application of the SPEA algorithm to reliability multi

The initial population for all considered cases (1
is given in Table 2. It describes the set of
components which can be used to improving the
system reliability.
The common parameters in
“Knapsack_param.txt” are as follows:

o length 10
o maxgen 5
o mutation_probability 0.5
o recombination_probability 0.5
o bit_turn_probability 0.05.

Let us consider the following cases.
Case 1:

o mutation_type 1
o recombination_type 1.

Case 2:
o mutation_type 1
o recombination_type 2.

Case 3:
o mutation_type 2
o recombination_type 2.

Case 4:
o mutation_type 2
o recombination_type 1.

Case 5:
o mutation_type 2
o recombination_type 2
o mu 20
o lambda 20.

The mutation type and the recombination type are
different in four proposed cases. The last one has the
same types of mutation and recombination as case 3,
but there are different parameters mu
The results of execution of the progr
Tables 3-7 and are presented in Figures 8

Figure 8. Exemplary results for 5 generations
case 1

Guze Sambor
application of the SPEA algorithm to reliability multi -objective optimization

108

The initial population for all considered cases (1 – 5)
. It describes the set of

components which can be used to improving the

The common parameters in the file
are as follows:

recombination_probability 0.5

The mutation type and the recombination type are
different in four proposed cases. The last one has the
same types of mutation and recombination as case 3,

mu and lambda.
The results of execution of the program are given in

Figures 8-12.

Exemplary results for 5 generations –

Table 2. PISA_INI – initials individuals

ID Bit string

0 0111000010
1 0011110111
2 0111111101
3 0101101011
4 1011000001
5 1011010111
6 1011000000
7 0101101010
8 1001000011
9 0101000111

10 0110000111
11 0001110110
12 1010011000
13 1111011001
14 1001001110
15 1001111000
16 1001111111
17 0010010011
18 0110010001
19 1101110111
20 1010110101
21 0100101010
22 0110011100
23 1000100110
24 0011010001
25 1011110001
26 0010111010
27 1110011110
28 0011110111
29 1111001101
30 1111110100
31 0101110100
32 0100001000
33 0010110010
34 1100011010
35 0000111000
36 1011101010
37 1000010001
38 1011101000
39 1111011111
40 0100110110
41 0101111110
42 0110101100
43 1110010000
44 0000111000
45 0000011101
46 1001111011
47 0000000100
48 0110010010
49 1100001100

objective optimization

initials individuals

Time to
Failure

Cost
[USD]

5460 42100
4040 35000
5010 37900
4490 31100
4760 39600
4010 35900
5630 46100
4830 32000
5260 37800
4840 32900
5600 43700
4910 41500
4870 39700
4480 32300
5470 35100
4830 38800
4430 31400
5020 44000
5070 44900
4040 35000
4550 44900
5840 40100
5280 42200
6090 46800
4590 42400
4620 41500
5260 40400
5780 40400
4040 35000
5590 37600
4960 42400
4960 42400
7470 52200
4840 44900
5780 40400
5840 46900
4280 32900
5740 47100
4860 39400
4430 31400
5390 44000
5300 37900
5340 41900
5000 43300
5840 46900
5190 38600
4430 31400
7830 59600
5360 44900
6530 44100

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 109

Case 1.

Table 3. Results of the computer program execution,
where the grey rows are Pareto-optimal front – case 1

ID Bit string
Time to

Failure [h]
Cost

[USD]

1 1011010001 5010 32700
3 0101101011 4170 35900
4 1100111011 4270 33100
6 1111010111 5180 36700
10 1001111111 4230 35600
15 1011010001 5010 32700
16 1001111111 4230 35600
17 1011100001 4950 33000
25 1111010011 5180 36700
27 1001111111 4230 35600
30 1011010001 5010 32700
31 1011100001 4950 33000
32 1001111111 4230 35600
33 1011000111 4480 33900
35 1001101010 4240 37500
36 1011101010 4380 34100
38 1011000111 4480 33900
39 1111011111 4230 35600
40 1111010111 5180 36700
41 0101101011 4170 35900
42 1111111111 4230 35600
43 1111010000 4670 31800
44 1011000110 4440 34800
46 1001111011 4230 35600
47 1001010111 4510 34500
52 1011000011 4480 33900
54 1001111011 4230 35600
55 1011100001 4950 33000
56 1011100101 4950 33000
57 0011101011 4170 35900
59 1111110011 4620 32000
60 0101111111 4230 35600
61 1011000110 4440 34800
62 1011010001 5010 32700
64 1011010001 5010 32700
69 1001111011 4230 35600
72 1011000110 4440 34800
76 1001101010 4240 37500
79 1011010111 4650 31100
82 1011000111 4480 33900
83 1011000110 4440 34800
84 1001110011 4620 32000
88 1111011011 4230 35600
89 1111010111 5180 36700
92 1011000011 4480 33900
94 1101111011 4230 35600
95 1001101011 4170 35900
97 1001111011 4230 35600
98 1011000111 4480 33900
99 1011010011 4650 31100

Case 2.

Table 4. Results of the computer program, where the
grey rows are Pareto-optimal front – case 2

ID Bit string Time to
Failure [h]

Cost
[USD]

2 1111100011 5120 37000
3 0101101011 4170 35900
4 1001010011 4510 34500
11 0111100011 5120 37000
13 1001011110 4300 37200
14 1011100010 4660 33000
16 1001111111 4230 35600
18 1011100110 4660 33000
23 0111100011 5120 37000
25 1011100110 4660 33000
28 1011010001 5010 32700
29 1001010011 4510 34500
31 1001011110 4300 37200
33 1001100111 4450 34800
34 1001010011 4510 34500
39 1111011111 4230 35600
40 1011100110 4660 33000
43 1011000110 4440 34800
44 1001100011 4450 34800
45 1011100110 4660 33000
46 1001111011 4230 35600
47 0111010011 5180 36700
50 1011100110 4660 33000
54 0011101011 4170 35900
56 0111100011 5120 37000
57 0111100011 5120 37000
60 1001010011 4510 34500
62 1001010111 4510 34500
63 1111100011 5120 37000
64 0111100011 5120 37000
66 1011100110 4660 33000
68 1111011111 4230 35600
70 1011100110 4660 33000
71 1001011111 4230 35600
74 1001100111 4450 34800
75 1011010010 4720 32700
79 0111100011 5120 37000
80 1001100111 4450 34800
81 1001101111 4170 35900
83 1011010101 5010 32700
84 1001010011 4510 34500
85 1011100010 4660 33000
88 1001010011 4510 34500
90 0111100111 5120 37000
93 1001010011 4510 34500
94 1011010001 5010 32700
95 0001101111 4170 35900
97 1011100110 4660 33000
98 1001011110 4300 37200
99 1001011110 4300 37200

Numerical application of the SPEA algorithm to reliability multi

Case 3.

Table 5. Results of the computer program, where t
grey rows are Pareto-optimal front – case 3

ID Bit string Time to
Failure [h]

4 1011100110 4660
6 1001101010 4240
7 1011010110 4720
8 1111010111 5180
11 1011101010 4380
12 1011011110 4440
13 1001011110 4300
15 1011010101 5010
18 1011101010 4380
20 1011010110 4720
25 1011101010 4380
26 1001101010 4240
27 1011010110 4720
28 1001011010 4300
29 1011010110 4720
31 1001011010 4300
32 1001011110 4300
33 1011010110 4720
34 1001011110 4300
36 1011101010 4380
43 1011010110 4720
44 1011100110 4660
45 1011010110 4720
47 1011101010 4380
51 1011000111 4480
52 1011101010 4380
53 1011100110 4660
54 1011010110 4720
57 1011101010 4380
58 1011100110 4660
59 1001101010 4240
60 0011101010 4380
61 1011101010 4380
64 1011101010 4380
65 1011010110 4720
69 1011011110 4440
70 1011100110 4660
72 1011000111 4480
73 1001011110 4300
74 1011010010 4720
76 1011101010 4380
77 1001011110 4300
80 1011000111 4480
82 1011101110 4380
83 1011010001 5010
84 1011100110 4660
86 1011100110 4660
94 1011000111 4480
96 1111010111 5180
99 1001011110 4300

Guze Sambor
application of the SPEA algorithm to reliability multi -objective optimization

110

. Results of the computer program, where the
case 3

Cost

[USD]

33000
37500
32700
36700
34100
33800
37200
32700
34100
32700
34100
37500
32700
37200
32700
37200
37200
32700
37200
34100
32700
33000
32700
34100
33900
34100
33000
32700
34100
33000
37500
34100
34100
34100
32700
33800
33000
33900
37200
32700
34100
37200
33900
34100
32700
33000
33000
33900
36700
37200

Figure 9. Exemplary results for 5 generations
case 2

Figure 10. Exemplary results for 5 generations
case 3

Figure 11. Exemplary results for 5 generations
case 4

Figure 12. Exemplary results for 5
case 5

objective optimization

Exemplary results for 5 generations –

Exemplary results for 5 generations –

Exemplary results for 5 generations –

Exemplary results for 5 generations –

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 111

Case 4.

Table 6. Results of the computer program, where the
grey rows are Pareto-optimal front

ID Bit string
Time to

failure [h]
Cost

[USD]

1 0011110111 4620 32000
5 1011010111 4650 31100
6 0101101110 3830 35000
8 1111010111 5180 36700
9 1111010111 5180 36700
10 1011010110 4720 32700
11 0101110111 4620 32000
12 0101110111 4620 32000
13 1001101111 4170 35900
19 1101110111 4620 32000
22 1111010111 5180 36700
28 0011110111 4620 32000
31 1011010111 4650 31100
32 1001010011 4510 34500
33 1101110111 4620 32000
34 0011110111 4620 32000
35 0101110111 4620 32000
36 1011101010 4380 34100
37 0011110111 4620 32000
43 0011110111 4620 32000
44 0011110111 4620 32000
45 1101110111 4620 32000
48 1011110111 4620 32000
49 0011101110 4380 34100
51 1011010111 4650 31100
52 1011101010 4380 34100
53 0111100111 5120 37000
55 0101110111 4620 32000
56 0101110111 4620 32000
59 1011010111 4650 31100
61 1101110111 4620 32000
64 1001110111 4620 32000
65 1011010111 4650 31100
67 1011010111 4650 31100
69 1001101110 4240 37500
70 1111010111 5180 36700
71 1111010111 5180 36700
72 0111110111 4620 32000
74 0001110111 4620 32000
75 0101110111 4620 32000
79 1101110111 4620 32000
80 1111110111 4620 32000
81 1001101110 4240 37500
82 1001101110 4240 37500
83 0011110111 4620 32000
86 1001101110 4240 37500
88 0111110111 4620 32000
94 0111111111 4230 35600
95 1101110111 4620 32000
98 1101110111 4620 32000

Case 5.

Table 7. Results of the computer program, where the
grey rows are Pareto-optimal front

ID Bit string
Time to

failure [h]
Cost

[USD]

0 0101101010 3830 35000
1 0011110111 4620 32000
3 0101101011 4170 35900
5 1011010111 4650 31100
6 1011010111 4650 31100
7 0101101010 3830 35000
12 1010110111 4690 28600
13 1111011001 4180 34700
14 1011100010 4660 33000
16 1001111111 4230 35600
17 0101110111 4620 32000
18 0011110111 4620 32000
19 1101110111 4620 32000
20 0101101011 4170 35900
22 0101101011 4170 35900
23 1011010111 4650 31100
27 1111011111 4230 35600
28 0011110111 4620 32000
29 1101110111 4620 32000
30 1001111011 4230 35600
31 1011010101 5010 32700
32 0101101011 4170 35900
33 1001110111 4620 32000
34 1011010101 5010 32700
35 1101110111 4620 32000
36 1011101010 4380 34100
37 1011100010 4660 33000
38 0101110011 4620 32000
39 1111011111 4230 35600
40 0001111011 4230 35600
41 0111100011 5120 37000
42 1011010111 4650 31100
43 1011010101 5010 32700
45 0011111111 4230 35600
46 1001111011 4230 35600
47 1111011111 4230 35600
48 1011010101 5010 32700
49 1010110111 4690 28600
51 0101101010 3830 35000
52 1011101010 4380 34100
53 1101110111 4620 32000
54 0101101010 3830 35000
55 0111101011 4170 35900
56 0111101011 4170 35900
57 0001110111 4620 32000
61 0101101010 3830 35000
62 1101110111 4620 32000
63 0011110111 4620 32000
65 1011010111 4650 31100
67 0011111111 4230 35600

Guze Sambor
Numerical application of the SPEA algorithm to reliability multi-objective optimization

 112

According to the results given in Tables 3-7 and
shown graphically in Figures 8-12 the exemplary
structures of the two-state parallel-series are
presented in Figures 13-17.

Component type 1

Compoment type 2

Component type 3

Component type 4

Component type 2

Component type 3

Component type 2

Component type 1

Figure 13. Example of the system structure
according to results of the optimization in Case 1

Component type 2

Component type 3

Component type 4

Component type 1

Component type 3

Component type 2

Figure 14. Example of the system structure
according to results of the optimization in Case 2

Component type 1

Component type 3

Component type 4

Component type 2 Component type 3

Figure 15. Example of the resulting system structure
according to results of optimization in Case 3

Component type 4

Component type 2

Component type 1

Component type 3

Component type 2

Component type 1

Figure 16. Example of the system structure
according to results of the optimization in Case 4

Component type 1

Component type 3 Component type 2

Component type 1

Component type 3

Component type 2

Component type 1

Figure 17. Example of the system structure
according to results of the optimization in Case 5

These selected figures indicate a variety of
opportunities to redesign the considered system with
accordance to the time to failure and cost. Numerical
data for these two objectives is given in Tables 3-7.

6. Conclusions

The SPEA algorithm and the binary knapsack
problem have been described. The computer
program to solve this problem based on this
algorithm has been presented. Furthermore, the
conversion of the reliability optimization problem to
the 0-1 knapsack optimization problem has been
proposed. Finally, the application of the computer
program to the multi-criteria optimization for
reliability problem has been done. The methods,
algorithms and computer program presented in the
paper can be applied to the reliability and safety
optimization. The example in Section 5 has only
shown potential applications of proposed computer
program. In the future the extension of the
capabilities of computer program for multi-objective
optimization of the multi-state systems reliability
should be done.

References

[1] Dziula, P., Kolowrocki, K., Siergiejczyk, M.
(2014). Critical infrastructure systems modeling,
Journal of Polish Safety and Reliability
Association, Summer Safety and Reliability
Seminars, 5, 1, 41-45, 2014.

[2] Guze, S. (2014). Application of the knapsack
problem to reliability multi-criteria optimization.
Journal of Polish Safety and Reliability
Association, Summer Safety and Reliability
Seminars, 5, 1, 85–90, Gdańsk-Sopot.

[3] Kołowrocki, K. (2004). Reliability of Large
Systems. Elsevier, Amsterdam - Boston -
Heidelberg - London - New York - Oxford - Paris
- San Diego - San Francisco - Singapore - Sydney
- Tokyo.

[4] Kołowrocki, K. & Soszyńska, J. (2010).
Optimization of complex technical systems

Journal of Polish Safety and Reliability Association
Summer Safety and Reliability Seminars, Volume 6, Number 1, 2015

 113

operation processes. Maintenance Problems, 1,
31-40, Radom.

[5] Kołowrocki, K. & Soszyńska-Budny, J. (2011).
Reliability and Safety of Complex Technical
Systems and Processes, Modeling – Identification
– Prediction – Optimization, Springer-Verlag.

[6] Kołowrocki, K. & Soszyńska-Budny, J. (2013).
Reliability prediction and optimization of complex
technical systems with application in port
transport. Journal of Polish Safety and Reliability
Association, Summer Safety and Reliability
Seminars, 3, 1-2, 263 – 279, Gdańsk-Sopot.

[7] Kołowrocki, K. & Soszyńska-Budny, J. (2014).
Operation and reliability optimization of complex
technical systems. Journal of Polish Safety and
Reliability Association, Summer Safety and
Reliability Seminars, 5, 1, 91–106, Gdańsk-
Sopot.

[8] Kuo, W. & Prasad, V.R. (2000). An annotated
overview of system-reliability optimization. IEEE
Trans. on Reliability 49, 2, 176-187.

[9] Kuo, W. & Zuo, M. J. (2003). Optimal Reliability
Modeling: Principles and Applications. Hoboken:
John Wiley & Sons, Inc.

[10] Lisnianski, A. & Levitin, G. (2003). Multi-State
System Reliability. Assessment, Optimisation and
Applications. World Scientific Publishing Co.
Pte. Ltd.

[11] Martello, S. & Toth, P. (1990). Knapsack
Problems: Algorithms and Computer
Implementations. Chichester, U.K.: Wiley.

[12] Ming-Hua, L., Jung-Fa, T. and Chian-Son Y.
(2012), A Review of Deterministic Optimization
Methods in Engineering and Management,
Mathematical Problems in Engineering, Volume
2012.

[13] Siergiejczyk, M. & Dziula, P. (2013).
Selected aspects of acts of law concerning
crisis management and critical infrastructure
protection. Journal of Konbin, 2 (26), p. 79-
88.

[14] Sun, W. & Yuan, Y.X. (2006). Optimization
theory and methods: nonlinear programming.
Springer-Verlag.

[15] Szłapczyńska, J. (2013). Multicriteria
Evolutionary Weather Routing Algorithm in
Practice. TransNav, the International Journal on
Marine Navigation and Safety of Sea
Transportation, Vol. 7, No. 1, 61-65, Gdynia.

[16] Venter, G. (2010). Review of Optimization
Techniques, Encyclopedia of Aerospace
Engineering, John Willey and Sons, Ltd.

[17] Zitzler, E. (1999). Evolutionary Algorithms
for Multiobjective Optimization: Methods and

Applications. PhD thesis, ETH Zurich,
Switzerland.

[18] Zitzler, E. & Thiele, L. (1999). Multiobjective
Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, VOL.
3, 4, 257–271.

[19] Website of PISA project available at
www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php.

Guze Sambor
Numerical application of the SPEA algorithm to reliability multi-objective optimization

 114

