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Abstract

The main aim of the paper is the computer-aidedtirabjective reliability optimization using the SRE
algorithm. This algorithm and the binary knapsaodpem are described. Furthermore, the computegrpno
that solves the knapsack problem with accordanc®@Pi&A algorithm is introduced. Example of the puaissi
application of this program to the multi-objectingiability optimization of exemplary parallel-sesi system is
shown.

1. Introduction by well-known deterministic optimization methods

, , or engineering and management [12], [14], [16].
The technological development requires the use Oirpage problems are important according to the

more advanced methods and techniques to solve tgisica| infrastructures analysis and modelling), [1]
engineering problems. This is a result of the Tl 113] g0, Because that applies to everyday human
the technical systems are be_comlng more comple ctivities, the multi-objective approach to the
Thus, the problems of designing optimal systems Ok hqyement operation process, reliability and safe
finding optimal solutions are met in many areas of \naq toc be used. Thus. the proposition  of
present science, technology and economics. Wheg,nstormation a reliability optimization problera t

we take into account the optimization problem, they,q binary knapsack problem [2], [11], [17]-[19] i

three elements need to be specify: a model of they.oqented in the paper. Furthermore, a possible
phenomenon of distinguished decision Va”ables’application of the computer program to the multi-

objective functions also known as a quality CRIBI . jteria reliability optimization of the technical
and constraints [2], [17]-[18]. This is a classipalnt system is shown. This implements the Strength
of view on optimization problem. With the reference g a4 Evolutionary Algorithm [15], [17]-[19]

to the current_state-of-the-art in _the reliabilapd  \\hichis recognized as one of the most effectiv.[1
safety analysis of the technical systems the

increasing of their complexity are noted [4], [}
This implies that the improvement of the system [5]
[8]-[9] only in one direction is no longer sufficie
Therefore, the one-objective optimization [3], The basic aim of both approaches to optimization is
[5]-[7], [12], [14], [16] should be replaced by il  to get the solution for minimizing or maximizing
objective approach [2], [9], [14],[16]-[19]. problem. The number of the objective functions is a
Most of the presented results take into accouny onl fundamental difference. Thus, the definition of the
one criterion for the optimization. There are the single-objected optimization problem is following:
known methods to the reliability prediction and

optimization of complex technical systems related t F(x) - minor F(x) - max,

their operation processes, where the time is a

fundamental criterion [3]-[7], [10]. The tools for Co

solving the problems of complex technical systems i (x)=01;(x)<0x201,]=12...,n (1)
availability, safety and cost optimization [3]-[@}e

also introduced. All of these problems can be sblve Where

2. Concepts of the single and multi-objected
optimization
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X, - decision variables,=12,...,n;

F(x;) - goal(objective) function;

I, (x)- limits function (low or high) for decision
variablesj, j =12,...,n.

The solution for above problem is to find the

unknown goal function.

improved in any dimensiowithout degradation in
another. They are called Pareto optimal (Pareto
frontier/ Pareto set/ Pareto front), what is relate
the concept of domination vector by vector. It is
simple to explain based on followimgefinitions 1-4
[17]-[18].

Definition 1.Let us take into account a maximization
(minimization) problem and consider two decision

In the other hand, the multi-objective optimization vectors a,blJX, then a is said to dominateb

model can be described as a vector functforthat

maps a tuple ofn decision variables (parameters) to

a tuple of n objectives functions, and a set &f

(a>=b or a<b) if and only if

0i O{12....0} : £,(2) > ,(b) ( f,(@) < f,(0))

constrains. Objective functions and constraints arel

functions of the decision variables. The formal O0{2,...n}:f (@) > f,(b) (f,(a)<f (b))

notation is as follows [2], [17]-[18]:

y = f(x) = (£,(x), f,(x),..., f,(x)) - maxor min
subject toe(x) = (g (x),&,(X),...,e(x))< 0 or

e(x) =(6(x).6,(x).....6(x))20,  (2)

where

x=(x1,x2,...,xm)DX,
Y= (¥ Yor s ¥) BY,

and x is the decision vectory is the objective

vector, X is denoted as the decision spaceYaisd
called the objective space.
The constraint®e(x) <0 (e(x)=0) is described the

set of feasible solution for maximization
(minimization) problems.

The set

X, ={x0OX |e(x)< 0}
(X, ={xDx |e(x)=0}) (3)

of decision vectorsx that satisfy the constraints
e(x)<0 (e(x)=0) is called the feasible set for
maximization (minimization) problems. Following
the above, its image, i.e., the feasible regiothim
objective space, is denoted as

Y, = (X)) = OO0}

XOX ¢

(4)

2.1. Introduction to Pareto-optimality

According to above notation, there exist the set of

multi-objective optimization problem solutions.

corresponding  objective  vectors cannot

10z
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Definition 2.Let us take into account a maximization
(minimization) problem and consider two decision
vectorsa,bd X, thena is said to weak dominate

if and only if

Oi O0{L2,...n}: f.() = . (b) (f,(a) < f.(b))
L
0O{L2,...0: @)= f,b) (f,@@)<f b)) (6

Definition 3.Let us take into account a maximization
(minimization) problem and consider two decision
vectorsa,bd X, thena is said to be indifferent to
b if and only if

Oi0{12,....,n}: f,(a)not = f (b) O f, (b)not = f,(a)
(f,(@)not< f (b) O f,(b)not< f,(a)) 7

The graphical interpretation of the above defimitio
are presented iRigure 1

1
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Figure 1.Possible relation in objective space [17]

. . _ It According to given relation between the solutioms i
consists of all decision vectors for which the

objective spaceDefinitions 1-3, it is possible to

be jefine the Pareto optimality. However, the key éssu
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is specifying the concept of non-dominated decisionthan it. In general, the set of admissible rulew f
vector [17]-[18]. most decision problems is large, sometimes infinite
Therefore, this is not a sufficient criterion t&éanto
account a single rule, but should favor admissible
rules. The Pareto-optimality gives a suggestiontwha
decision maker can consider as optimal (maximal or
if minimal).

(8)

Definition 4. A decision vectorx [0 X, is said to be
non-dominated regarding to sét(] X, if and only

not],a > x. 2.2. Methods and algorithms for multi-

objective optimization
It means, that all decision vectors which are not

dominated by another decision vector are called non'he mc_)s_t f_requently used mult'|-9bJect|ve 'an'alyt'lcal
dominated. Moreover . deterministic or non-deterministic optimization

the Pareto optimality is .
defined as follows [17]. methods are as follows:
- Weighted Objective Methods;

Definition 5.A decision vectorx is said to be Pareto  — Hierarchical Optimization Method,;

optimal if and only if x is non-dominated regarding ~ Trade-Off Method;
X — Global Criterion Method;

! — Method of Distance Functions;
- Min-Max Methods;

In the other words, when the decision vectors are Goal Programming Method.

non-dominated within the entire search space, they
are denoted as Pareto optimal or efficient. Its _
graphical representation is called Pareto-optimallhe above approaches can provide general tools for

front or surface (seligure 2.

Feasible region

Dominated
solutions

OBJECTIVE FUNCTION 2

Pareto front

Nondominated solutions —
Pareto Optimal set

| | |

OBJECTIVE FUNCTION 1

Figure 2 lllustrative example of Pareto-optimal front

for minimizing problem

solving optimization problems to obtain a global or
an approximately global optimum. In the second case
the better way to work out is using the evolutignar
or genetic algorithms, such as:

— Strength Pareto Evolutionary Algorithm
(SPEA);

- VEGA - Vector Evaluated Genetic Algortihm;

— HLGA - Hajela and Lin’'s Weighting-based
Genetic Algorithm;

— NPGA — Niched Pareto Genetic Algorithm.

General operation of genetic or evolutionary
algorithms is based on the following steps (see
Figure 3:
1. Initialization.
2. Calculate fitness.
3. Selection/Recombination/Mutations
and children).

(parents

4.

Finished.

Moreover, when a set of choices and a way of

valuing them are given, the Pareto front is theofet The simplified drawing showing the appearance of
choices that are Pareto optimal (efficient). Reg@yd the basic genetic algorithm is presentefigure 3

to the set of choices that are Pareto-optimal arhe data is represented by population of

decision maker can make tradeoffs within this iset, chromosomes, where each of them is composed of a
place of consideration the full range of every string of bits (se€igure 3.

parameter. It means that the shape of the Pawato fr
indicates the nature of the trade-off between then the paper the Strength Pareto Evolutionary

different objective functions.

In language of the statistical decision theory the[17]-[18] is

Algorithm (SPEA) and its numerical realization [2],
considered as a representative

above approach can be compare to an admissiblgvolutionary algorithm. The basic notations for

decision rule. It is a rule for making a decisiartts
that there is not any other rule that is alwaydtéé

10z

correct presentation of it are as follows:
t - number of generation,
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P - population in generation The value of the fit function F for items from sdis
ﬁ - external set in generation and ﬁ can be found according to following
P’ - temporary external set, procedure: _ _ _

P' - temporary population. The real valueS[0]) is assigned for every item

iOP, (called power). This value is proportional to
number of itemgOPR,, which represents the

solutions dominated by item
The adaptation of iteis calculated as sum of all
items from external set, represents solution

Additionally, the following input parameters are
given:

N - population size,

N - maximum size of external set,

T - maximum number of generations, dominated by iterji increased by 1.

. - crossing probability, The aim of addition 1 is to ensure that itenisP

P,,- mutation probability, will have better value of fit function than item®in
setR,, i.e.

A- set of non-dominated solutions.

n

Population Rank Children S(@i) = N+l 9)
[0 eo 00
D . ) EEERED where:
ERERR (0004 4 4] S(i) - power of item,
TSEEEE n - number of items in population dominated by
itemi.
Create Initi Calculate | | Select | | Create It is assumed that value of fit function for itens
Population Fitness Parents Children equa| to his power, ie.
[} [
Figure 3.Basic genetic/evolutionary algorithm [16] F)=S0). (10)
The Strength Pareto Evolutionary Algorithm [2], Step 4 Selection
[15]: Let P' = @.
Fori=1,2,... kdo
Step 1 Initialization: a) To choose randomly two itenisj JP O P.
The initial populationP, is generated according to b) If F()<F(j) then P =P O{i} else
procedure: P'=P' { j}, under assumption that value
a) Toget |t_em_. of fit is minimizing.
b) To add item to setP,.
Next, the empty external s& is generated, where ~ Step 5 Recombination
t=0. Let P"=@.
Fori=1,2,...N/2 do:
Step 2 The complement of the external set is done. a) To choose two items, jJP' and to remove
Let P'=P it fromP" .
a) To copy non-dominated items from b) To create itemsk,| by crossing the items

populationP, to populatiorP" . I J .

b) To remove dominated items from &t c) To add itemsk,| to setP” with probability
c) To reduce the cardinality of the s&' to P., else add itemd, | to setP”.
value N, using clustering and the solution
give into ﬁm, Step 6 Mutation
Let P"=@.
Step 3 Determination fit function. For every itemi [J P" do:

a) To create iten) by mutation the itenm with
probability P,,.
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b) To add itenj to setP”.

Step 7 Finished
Let P, =P" andt=t+1. If t=T then return A —

t+1
nondominated solution from populatioP, and
finish else back t&tep 2

The graphical representation of the ab

algorithm’s steps is shown Figure 4.

population P

mutation o |'

\

— | pr—
selaction ) - [
recombination @ | o |

\ s (
.-/ ' P

axternal sat P

mating pool P*

Figure 4.General steps in the SPELV]

3. The knapsack problem

The knapsack problem has bderwnsince 1897 as
a combinatoriboptimization problem. The gener
description is based on given a set of items,
with a mass and a value. There is determinec
number of each item to include in a collection fsat
the total weight is less than or equal to a givenit|
and thetotal value is as large as possible (accor
to (1)). The knapsack problem is a subset ¢-hard
problems. It means that there is -polynomial
algorithm to solve this problem. Therefore,
knapsack problem has beemodified many times
i.e. to form of the @& knapsack problem. Th
modification allows for formulation of knapsac
problem as multébjective optimization problei

3.1. The 0-1 knapsack problem- basic
notations

Generally, a 0-1 knapsack problemnsist of a set
of items,weight and profitassociate with each
item, and an uppdround for thecapacity of the
knapsack. The main goal is tiind a subset of
items which maximizes the profitend all selected
items fit into the knapsack, i.e., ttmal weight does
not exceed the given capacity [2]L1], [17], [18].

This single-objective problencar be extended
directly tothe multi-objective caséy allowing an
arbitrary number oknapsacksFormally the multi-
objective 0-1 knapsack probleoan b defined in

10t

the following way [2], [17], [18] according to
formula (2):

Given a sebf m itemsanc a set ofn knapsacks,
with

P, = profit of item j according to knapsaci,

w ; = weight of item j according to knapsadi,

¢ = capacity of knapsaci,

find a vectorx = (x,,%,,..., x,)0{04}", such that

0id{12,...,n} IQ(X)ZZm:WH X =¢ (12)
and for which f(x)=(f1(x), fz(x),...,fn(x)) is
maximum, where

(9=, X (12)

and x; = 1if and only if when iten j is chosen.

3.2. The 01 knapsack problem solution

The solutions of knapsagkoblem can be desbed
in terms of a genetic or evolutionary methcin the
paper, the SPEA algorithm from Section 2.2.
proposed to solve the problenThe computer
program tofind the solution ofthe 0-1 knapsack
problem is implemented in C prograring language
with using PISA projer codes, developed in
Computer Engineering and Networks Laboraton
ETH Zurich and available on websit
http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.
PISA is a textiased interfac for search algorithms.
It splits an optimization process into two modu
One module, called th¥ariatol, contains all parts
specific to the optimization problem (e.g0-1
knapsack problem). Theecondmodule, called the
Selector, contains the parts of an optimizati
process with are independent of the optimizat
problem (mainly the selection proc, i.e. SPEA2).
These two modules are implemented as sep
programs which communicate through text - as is
presented ifrigure 5[19].

OPTIMIZING ALGCRITHMS QPTIMIZING PRCBLEMS
(SPEA2, NSGA-II, IBEA ...) (DTLZ, ZDT benchmarks, ...)

I &Y 7
Selector |« : »  Variator }
L J text files I

Figure 5.The schemaf PISAproject components
[19]
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There are the six text files that are a platform to4. Reliability of the two-state parallel-series
exchange of data between the Variator (Knapsackpystem

and the Selector (SPEA2). According to o )
documentation of Knapsack module, the most/ the case of two-state reliability analysis of
important in common files is PISA cfg file that Parallel-series systems we assume that [2], [4]:

consists the following parameters: — nis the number of system components,

- alpha - number of individuals in initial - E, i=12..k, j=12..l, are components
population; of a system,

- mu- number of individuals selected as parents;  _ T are independent random variables

- lambda- number of offspring individuals; : _ .

- dim- number of objectives representing the lifetimes of componerts

Unfortunately there are some limitations to the i=12..k, j =12...1,

Knapsack module. It works only whemu == _ _ , o
lambda In the other hand, if an odd number is RJ (t)_ P(T‘J' >1),t0<0,e), s e_l rehability
chosen formu andlambda the last individual in the function of a componentk; ,i=12..k,
mating p(t))ol (see!:iﬁure 4 canbpnly undergo j=12,..1,

mutation, because it has no recombination partner. F.(t)=1-R (t) = P(T, <t),t0<0), is the

Additionally, two files of the parameters for both distribution function of the component,
programs are available. lifetime T., 1i=212..k,j=212..l, also
In case of the Variator the parameters are asvistlo e l e J 120y

- seed seed for random number generator; called an unreliability function of a component

- length- length of the binary string (length of the B, 1=12..k, j=12..].

chromosome); _ Moreover, we assume that componefts, E,, ...,
- Qﬁéﬂg%nsan|mum number of generations (stop E,, i=12..k,create a parallel subsysters,
- outputfile — name of file for output of the last i=12...k,, and that these subsystems create a series

population in archive, where one individual is system.
written per line using the following format:
ID (objective 1) (objective 2) ... (objective dim) Definition 6. A two-state system is called parallel-

bit-vector; series if its lifetimeT is given by

- mutation_type— mutation type, where 0 = no
mutation, 1 = one bit mutation, 2 = independent T= min{ maxT, }. (13)
bit mutation; tsisk, " Isjsl !

recombination_type — recombination type,

where 0 = no recombination, 1 = one point According to above definition, the reliability

crossover, 2 = uniform crossover; function of the two-state parallel-series system is

mutation_probability —  probability that given by

individual is mutated;

recombination_probability probability that two _ Ky I

individuals are recombined; R 1.0, (1) = H[l— rj F; (t)}t H(-00,).  (14)

bit_turn_probability - probability, that bit is i= 1=

turned when mutation occurs only used for

independent bit mutation. 5.5. Multi-criteria methods for reliability
optimization problem

For the Selector (SPEA2) the following parameters

We assume that the two-state parallel-series system

are included: : _ _ b
- seed seed for random number generator; with three main unitsS is given ( = 123). Every
- tournament - parameter for number of the unitis the parallel subsystem consists of maximum
tournament selection. components which can be chosen to provide

redundancy (seBigure 4. These maximal numbers
The computer program is implemented with are equal to:
accordance to formulae (1)-(12). - 4, forunitS;

- 3, forunits,;
3, for unit ;.

10¢
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A E. T component is into knapsack. On the other hand, the
" in this chromosome is equal to 0 means thst thi
1B, T Eas gen in this ch _ q
component is not in knapsack. The exemplary
H B2 | chromosome of the system is presente&igure 5
| L Ep Es, The length of a chromosome is the number of the
| By { components, which are under investigation (number
| E. || Ess | of system components, seégure 7).
H B [ SubS){stem 1 Subsystem 2 Subsystem 3
Figure 6.Exemplary scheme of a parallel-series
system i1jojJojojojojr1jofz1fo
Every component of the system can have two states, [conponent Component Component
functioning with the nominal capacity or total tai, vpel vpe3 ype3

corresponding to capacity 0. The main charactesisti

of these components are lifetime and cost. Thdigure 7.Exemplary chromosome describes the

exemplary system components are givefidhle 1 system components
Table 1.Exemplarycharacteristics of the system The showcase of the possibility usage of the
components computer program is presenteddrample.
Subsystem Component| Lifetime Cost Example
type (h] [USD] Let us take into account the two-state paralleieser
1 35C 989¢ system with three main unit§, where i =123.
1 g ggg 1;%3: Furthermore, the optimization of the time to fadur
2 19¢ 4122 according to minimal cost is needed to done. There
1 19¢ 381¢ the set of components that can be selected to wapro
2 2 74C 1001¢ the system reliability.
3 50C 721¢
1 96( 1018¢ To solve above problem, the computer program
3 2 18C 4991 proposed in Section 3.2. is used according to
3 607 1568: formulae (13) — (14). The five cases are considered

o _ for showing the capabilities of this program. Iresy
In real world application, the main problem can becz5e five generations of the algorithm (presented i
formulated as the question how to create new systemection 2.2.) are taken into account for program
or to redesign existing one for extending its titme  gyxecution.
failure as much as possible with a cost as low aso yse the computer program, the following

maximize the time to failure of the system and toconfigure file are fixed. In the case 5 two paraemet
minimize the cost. This is the classical two-ohje&et  5re changed.

optimization. The solution of the problem can be
done by a transformation the reliability problem to The input file ‘PISA_CFG” for cases 1-4 is as
the 0-1 knapsack problem. This can be donegg|ows: B
according to the Section 3, when the assumptioms ar o g|pha 50
as follows: o0 mu50
- ¢ isthe time to failure of designed system; o |ambda 50

- p, is the profit equal to lifetime of using 0 dim2

the particular component; L
P P dand for case 5 is given as

w ; is the cost of the component usage an o alpha 50
installation. o mu 20
o lambda 20

Furthermore, let us assume that a chromosome g dim 2
represents the reliability of whole system. In this
chromosome the gen equal to 1 means that given
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The initial population for all considered cases 5)
is given in Table 2 It describes the set
components which can be used to improving
system reliability.
The common  parameters
“Knapsack_param.tktare as follows
o length 10
maxgen 5
mutation_probability 0.5
recombination_probability O
bit_turn_probability 0.05.

in the file

Oooo

Let us consider the following cases.
Case 1:
0 mutation_type 1
0 recombination_type 1.
Case 2:
0 mutation_type 1
0 recombination_type 2.
Case 3:
0 mutation_type 2
0 recombination_type 2.
Case 4:
0 mutation_type 2
0 recombination_type 1.
Case 5:
0 mutation_type 2
0 recombination_type 2
o mu20
o0 lambda 20.

The mutation type and the recombination type
different in four proposed cases. The last onetina
same types of mutation and recombination as ce
but there are different parametensandlambda.
The results of execution of the pram are given in
Tables 3-7and are presented Figures &12.

4000U

35000 o

30000

25000

20000

Cost [USD]

15000

10C00

5000

G 1000 2000 2000 4000 00U H0UY

Time to failure [h]

Figure 8. Exemplary results for 5 generatic —
case 1l

10¢

Table 2.PISA_INI-initials individuals

. . Time to | Cost

ID | Bit string Failure | [USD]
0(0111000010 5460 | 4210(
1{0011110111 4040 | 3500(
210111111101 5010 | 3790(
3/0101101011 4490 | 3110¢
411011000001 4760 | 3960
5(/1011010111 4010 | 3590(
61011000000 5630 | 4610(
710101101010 4830 | 3200(
8(1001000011 5260 | 3780(
9(0101000111 4840 | 3290(
10{0110000111 5600 | 4370(
11/0001110110 4910 | 4150
121010011000 4870 | 3970¢
13(1111011001 4480 | 3230(
141001001110 5470 | 3510
15/1001111000 4830 | 3880(
161001111111 4430 | 3140
17/0010010011 5020 | 4400¢
180110010001 5070 | 4490¢
191101110111 4040 | 3500
20|1010110101 4550 | 4490
2110100101010 5840 | 4010d
2210110011100 5280 | 4220(
23|/1000100110 6090 | 4680d
2410011010001 4590 | 4240
2511011110001 4620 | 4150
26|0010111010 5260 | 4040d
2711110011110 5780 | 4040d
2810011110111 4040 | 35000
29|1111001101 5590 | 3760
30(1111110100 4960 | 42400
310101110100 4960 | 4240(
320100001000 7470 | 5220(
33/0010110010 4840 | 4490
34|1100011010 5780 | 4040d
35/0000111000 5840 | 4690(
36(1011101010 4280 | 3290
37|1000010001 5740 | 4710d
38|1011101000 4860 | 3940(
39(1111011111 4430 | 3140
400100110110 5390 | 4400(
4110101111110 5300 | 3790(
4210110101100 5340 | 4190(
43]|1110010000 5000 | 4330(
4410000111000 5840 | 4690(
45|0000011101 5190 | 3860(
461001111011 4430 | 3140(
4710000000100 7830 | 5960(
48|0110010010 5360 | 4490(
4911100001100 6530 | 4410(
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Case 1. Case 2.

Table 3.Results of the computer program execution, Table 4.Results of the computer program, where the
where the grey rows are Pareto-optimal front — ¢ase grey rows are Pareto-optimal front — case 2

Time to Cost

D | Bitstring | _Imeto | Cost P | B9 | Faiure [y | UsD]
Failure [h] | [USD] 2 [111110001] 5120 37000

3 0101101011 4170 3590

1 [101101000] 501C | 3270( 4 1001010011 4510 3450(
3 1010110101| 417C | 3590¢ 11]011110001] 5120 37000
4 1110011101 427( 3310( 13(1001011110 4300 3720(
6 11111010117  518( 3670( 14[1011100010 4660 3300(
101100111111 423C | 3560( 161001111111 4230 3560(
151101101000 501C | 3270¢ 181011100110 4660 3300(
161100111111 423 | 3560C 230111100011 5120 | 37000

17]101110000 495( 3300(
25111101001 518( 3670(
27]100111111 423(C 3560(

25[101110011( 4660 33004
281011010001 5010 32700

301101101000 50ic 3270« 291001010011 4510 3450(
31|101110000 495( 3300( 311(100101111¢ 4300 3720(
321100111111 423( 3560( 3311001100111 4450 3480(
33(101100011 448( 3390( 3411001010011 4510 3450(
35]100110101| 424C | 3750( 391111011111 4230 35600
36]101110101| 438C | 3410( 401011100110 4660 3300(
38[101100011| 448C | 3390( 43[1011000110 4440 3480(
39[111101111| 423C | 3560( 441001100011 4450 34800
40]111101011] 518C | 3670( 45[1011100110 4660 33000
41]010110101 417(¢ 3590( 46]1001111011 4230 3560(
421111111111  423( 3560( 47]011101001] 5180 36700
431111101000 467C | 3180( 50 | 1011100110 4660 3300(
441101100011 444C | 3480( 540011101011 4170 3590
461100111101 ] 423C | 3560( 56011110001 5120 | 37000
4711001010111 451C | 3450 57(0111100011 5120 | 37000

521101100001 448( 3390(
541100111101 423(C 3560(
55[101110000 495( 3300(
561101110010 495(C 3300(

60|1001010011 4510 3450¢
621001010111 4510 3450(
63]1111100011 5120 37000

5710011101011 417¢ 35900 640111100011 5120 37000
501111110011 462 1 3200¢ 66 | 1011100110 4660 3300(
60010111111 423( 3560( 681111011111 4230 3560(
611101100011 444( 3480( 70/101110011( 4660 3300(
621101101000 501C | 3270( 71[1001011111 4230 3560(
64101101000 501C | 3270( 741001100111 4450 3480(
62]100111101] 423C | 3560¢ 75/101101001( 4720 32700
72]101100011| 444C | 3480« 79/011110001] 5120 37000
761100110101 424(C 3750( 80(1001100111 4450 3480(
791101101011 465( 3110( 81/1001101111 4170 3590(
82]101100011| 448C | 3390( 83]101101010] 5010 32700
83]101100011| 444C | 3480( 841001010011 4510 3450(
841100111001| 462C | 3200( 851011100010 4660 33000
881111101101 423C | 3560( 881001010011 4510 3450(

89111101011 518( 3670(
92[101100001 448( 3390(
94(110111101 423( 3560(
95100110101 417( 3590(

900111100111 5120 37000
9311001010011 4510 3450(
9411011010001 5010 32700

97100111101 423( 3560( 9510001101111 4170 3590(
98]101100011 448( 3390( 971101110011¢ 4660 3300(
99 |101101001 465( 3110( 98100101111¢ 4300 3720(

991100101111( 4300 37200
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Case 3

Table 5 Results of the computer program, whehe

grey rows are Pareto-optimal frontase

. Time to Cost
ID | Bitsting | coiure (] | [USD]
4 [101110011d 4660 | 33000
6 1001101010 4240 | 37500
7 [101101011d 4720 | 32700
8 [111101011] 5180 | 36700
11]101110101d 4380 | 34100
12[101101111d 4440 | 33800
13]100101111d 4300 | 37200
15]1011010101 5010 | 32700
18]101110101d 4380 | 34100
20[101101011d 4720 | 32700
251011101010 4380 | 34100
261001101010 4240 | 37500
27101101011 4720 | 32700
28/1001011010 4300 | 37200
29]101101011d 4720 | 32700
311001011010 4300 | 37200
321001011110 4300 | 37200
33101101011 4720 | 32700
341001011110 4300 | 37200
361011101010 4380 | 34100
43[101101011 4720 | 32700
44101110011 4660 | 33000
45101101011 4720 | 32700
47]101110101 4380 | 34100
511011000111 4480 | 33900
521011101010 4380 | 34100
53101110011 4660 | 33000
54101101011 4720 | 32700
571011101010 4380 | 34100
58]101110011 4660 | 33000
591001101010 4240 | 37500
600011101010 4380 | 34100
611011101010 4380 | 34100
64101110101 4380 | 34100
65]101101011d 4720 | 32700
69101101111 4440 | 33800
70]101110011 4660 | 33000
721011000111 4480 | 33900
731001011110 4300 | 37200
741101101001 4720 | 32700
761011101010 4380 | 34100
771001011119 4300 | 37200
80]1011000111 4480 | 33900
821011101110 4380 | 34100
831011010001 5010 | 32700
84101110011 4660 | 33000
86101110011 4660 | 33000
941011000111 4480 | 33900
961111010111 5180 | 36700
991001011110 _ 4300 | 37200

11C

37500
37000
36500
36000
= 35500
4 35000
2 34500
S 32000
33500
33000
32500
32000

T
2000 3000 4000 5000 6000

Time to failure [h]

Figure 9.Exemplary results for 5 generatic—

case 2
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Figure 10.Exemplary results for 5 generatit—

case 3
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Figure 11.Exemplary results for 5 generatic—

case 4
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Figure 12.Exemplary results for generations —

case 5
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Case 4 Case 5.

Table 6.Results of the computer program, where theTable 7.Results of the computer program, where the

grey rows are Pareto-optimal front grey rows are Pareto-optimal front

N Timeto | Cost N Time to Cost

ID | BItSting | tilure [n] | [USD] ID| Bitsting | ciiure (] | [USD]
1 |001111011] 4620 32000 0 |0101101010 3830 3500(
5 [101101011] 4650 31100 1 |0011110111 4620 32000
6 |[0101101110 3830 35004 3 10101101011 4170 3590(
8 |1111010111 5180 36700 5 1011010111 4650 31100
9 |1111010111 5180 36700 6 [1011010111 4650 31100
10]101101011¢ 4720 32700 7 0101101010 3830 3500(
110101110111 4620 32000 121010110111 4690 28600
120101110111 4620 32000 131111011001 4180 34700
13]/1001101111 4170 3590( 14]101110001¢ 4660 33000
191101110111 4620 32000 161001111111 4230 35600
2211111010111 5180 36700 170101110111 4620 32000
280011110117 4620 32000 180011110111 4620 32000
311011010111 4650 31100 191101110111 4620 32000
32/1001010011 4510 3450( 2010101101011 4170 3590¢
33/1101110111 4620 32000 2210101101011 4170 3590¢
3410011110111 4620 32000 23/1011010111 4650 31100
35|0101110111 4620 32000 2711111011111 4230 3560(
361011101010 4380 3410( 2810011110117 4620 32000
3710011110117 4620 32000 2911101110111 4620 32000
4310011110111 4620 32000 301001111011 4230 3560(
4410011110111 4620 32000 311011010101 5010 32700
45|1101110111 4620 32000 32/0101101011 4170 3590¢
4811011110111 4620 32000 3311001110111 4620 32000
4910011101119 4380 3410( 3411011010101 5010 32700
511011010111 4650 31100 35[1101110111 4620 32000
5211011101010 4380 3410( 36/1011101010 4380 3410¢
5310111100111 5120 37000 37]101110001( 4660 33000
550101110117 4620 32000 3810101110011 4620 32000
560101110111 4620 32000 39(1111011111 4230 3560(
5911011010111 4650 31100 40]0001111011 4230 3560(
61]110111011] 4620 32000 410111100011 5120 37000
641001110111 4620 32000 4211011010111 4650 31100
651011010111 4650 31100 431011010101 5010 32700
671011010111 4650 31100 4510011111111 4230 3560(
6910011011190 4240 3750( 461001111011 4230 3560(
70(1111010111 5180 36700 4711111011111 4230 3560(
7111111010111 5180 36700 4811011010101 5010 32700
7210111110111 4620 32000 49]1010110111 4690 28600
7410001110111 4620 32000 51|0101101010 3830 3500(
75(0101110111 4620 32000 5211011101010 4380 3410(
79(1101110111 4620 32000 53|1101110111 4620 32000
80(1111110111 4620 32000 5410101101010 3830 3500(
81(100110111(Q 4240 3750( 55|0111101011 4170 3590(
821001101119 4240 3750( 560111101011 4170 3590(
83/0011110111 4620 32000 570001110111 4620 32000
861001101119 4240 3750( 61|010110101¢9 3830 3500(
880111110111 4620 32000 62]1101110111 4620 32000
940111111111 4230 3560( 630011110111 4620 32000
951101110111 4620 32000 65/1011010111 4650 31100
981101110111 4620 32000 670011111111 4230 3560(

111
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According to the results given imables 3-7and
shown graphically inFigures 8-12the exemplary
structures of the two-state parallel-seriege
presented ifrigures 13-17

Component type I—

Component type I—

1

Compoment type

Component type Component type

Component type

Component type 3—

Component type 4—

Figure 13 Example of the system structure
according to results of the optimization in Case 1

Component type 24—

Component type 2

ittype ittype

Component type 3

Component type 4—

Figure 14 Example of the system structure
according to results of the optimization in Case 2

Component type 1—

Component type 3 Component type Component type ———

Component type 4—

Figure 15 Example of the resulting system structure
according to results of optimization in Case 3

Component type I

Component type J—|
Component type <'J

Component type 4 Component type

Component type 3—

Figure 16 Example of the system structure
according to results of the optimization in Case 4

Component type I—

Component type }

Component type J—|
Component type ‘.J

Component type

{

Figure 17 Example of the system structure
according to results of the optimization in Case 5

Component type

Component type 3

1

These selected figures indicate a variety of
opportunities to redesign the considered systerh wit
accordance to the time to failure and cost. Nuraéric

data for these two objectives is giverTiables 3-7

6. Conclusions

The SPEA algorithm and the binary knapsack
problem have been described. @ The computer
program to solve this problem based on this
algorithm has been presented. Furthermore, the
conversion of the reliability optimization probleim

the 0-1 knapsack optimization problem has been
proposed. Finally, the application of the computer
program to the multi-criteria optimization for
reliability problem has been done. The methods,
algorithms and computer program presented in the
paper can be applied to the reliability and safety
optimization. The example in Section 5 has only
shown potential applications of proposed computer
program. In the future the extension of the
capabilities of computer program for multi-objeetiv
optimization of the multi-state systems reliability
should be done.
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