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Abstract 
 

The main aim of the paper is the computer-aided multi-objective reliability optimization using the SPEA 
algorithm. This algorithm and the binary knapsack problem are described. Furthermore, the computer program 
that solves the knapsack problem with accordance to SPEA algorithm is introduced. Example of the possible 
application of this program to the multi-objective reliability optimization of exemplary parallel-series system is 
shown. 
 
1. Introduction 
 

The technological development requires the use of 
more advanced methods and techniques to solve the 
engineering problems. This is a result of the fact, that 
the technical systems are becoming more complex. 
Thus, the problems of designing optimal systems  or 
finding optimal solutions are met in many areas of 
present science, technology and economics. When 
we take into account the optimization problem, the 
three elements need to be specify: a model of the 
phenomenon of distinguished decision variables, 
objective functions  also known as a quality criterion 
and constraints [2], [17]-[18]. This is a classical point 
of view on optimization problem. With the reference 
to the current state-of-the-art in the reliability and 
safety analysis of the technical systems the 
increasing of their complexity are noted [4], [6]-[7]. 
This implies that the improvement of the system [5], 
[8]-[9] only in one direction is no longer sufficient. 
Therefore, the one-objective optimization [3],  
[5]-[7], [12], [14], [16] should be replaced by multi-
objective approach [2], [9], [14],[16]-[19]. 
Most of the presented results take into account only 
one criterion for the optimization. There are the 
known methods to the reliability prediction and 
optimization of complex technical systems related to 
their operation processes, where the time is a 
fundamental criterion [3]-[7], [10]. The tools for 
solving the problems of complex technical systems 
availability, safety and cost optimization [3]-[7] are 
also introduced. All of these problems can be solved 

by well-known deterministic optimization methods 
for engineering and management [12], [14], [16]. 
These problems are important according to the 
critical infrastructures analysis and modelling [1], 
[13], too. Because that applies to everyday human 
activities, the multi-objective approach to the 
improvement operation process, reliability and safety 
need to be used. Thus, the proposition of 
transformation a reliability optimization problem to 
the binary knapsack  problem [2], [11], [17]-[19] is 
presented in the paper. Furthermore, a possible 
application of the computer program to the multi-
criteria reliability optimization of the technical 
system is shown. This implements the Strength 
Pareto Evolutionary Algorithm [15], [17]-[19], 
which is recognized as one of the most effective [17]. 
 
2. Concepts of the single and multi-objected 
optimization 
 

The basic aim of both approaches to optimization is 
to get the solution for minimizing or maximizing 
problem. The number of the objective functions is a 
fundamental difference. Thus, the definition of the 
single-objected optimization problem is following: 
   
   min)( →ixF or max,)( →ixF  
 
   njixxlxl iijij ,...,2,1, ,0 ,0)( ,0)( =≥≤≤            (1) 

 
where 
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ix - decision variables, ni ,...,2,1= ; 

)( ixF  - goal(objective) function; 

)( ij xl - limits function (low or high)  for decision 

variables, nji ,...,2,1, = . 
 
The solution for above problem is to find the 
unknown goal function. 
 
In the other hand, the multi-objective optimization 
model can be described as a vector function f  that 
maps a tuple of m  decision variables (parameters) to 
a tuple of n  objectives functions, and a set of k
constrains. Objective functions and constraints are 
functions of the decision variables. The formal 
notation is as follows [2], [17]-[18]: 
 

( ) minor  max)(,),(),()( 21 →== xxxxfy nfff K  

subject to ( ) 0xxxxe ≤= )(,),(),()( 21 keee K or  

    ( ) ,)(,),(),()( 21 0xxxxe ≥= keee K         (2) 
 
where 
 
   ( ) ,,,, 21 Xx ∈= mxxx K  

   ( ) ,,,, 21 Yy ∈= nyyy K  
 
and x  is the decision vector, y  is the objective 
vector, X  is denoted  as the decision space andY is 
called the objective space. 
The constraints 0xe ≤)(  ( 0xe ≥)( ) is described the 
set of feasible solution for maximization 
(minimization) problems.  
 
The set  
 
   { }0xeXxX ≤∈= )(|f   

   { }( )0xeXxX ≥∈= )(|f      (3) 

 
of decision vectors x  that satisfy the constraints 

0xe ≤)(  ( 0xe ≥)( ) is called the feasible set for 
maximization (minimization) problems. Following 
the above, its image, i.e., the feasible region in the 
objective space, is denoted as  
 

   U
f

ff
Xx

xfXfY
∈

== )}({)( .     (4) 

 
2.1. Introduction to Pareto-optimality 
 

According to above notation, there exist the set of 
multi-objective optimization problem solutions. It 
consists of all decision vectors for which the 
corresponding objective vectors cannot be 

improved in any dimension without degradation in 
another. They are called Pareto optimal (Pareto 
frontier/ Pareto set/ Pareto front), what is related to 
the concept of domination vector by vector. It is 
simple to explain based on following Definitions 1-4, 
[17]-[18]. 
 
Definition 1. Let us take into account a maximization 
(minimization) problem and consider two decision 
vectors ,, X∈ba  then a  is said to dominate b   
( ba f  or  ba p )  if and only if  
 

)()( :},...,2,1{ ba ii ffni >∈∀ ( )()( ba ii ff < ) 

∧  
)()( :},...,2,1{ ba jj ffnj >∈∃  ( ).()( ba jj ff < )       (5) 

 
Definition 2. Let us take into account a maximization 
(minimization) problem and consider two decision 
vectors ,, X∈ba  then a  is said to weak dominate b  
if and only if  
 
   )()( :},...,2,1{ ba ii ffni ≥∈∀ ( )()( ba ii ff ≤ ) 

   ∧  
   )()( :},...,2,1{ ba jj ffnj ≥∈∃  ( ).()( ba jj ff ≤ )   (6) 

 
Definition 3. Let us take into account a maximization 
(minimization) problem and consider two decision 
vectors ,, X∈ba  then a  is said to be indifferent to 
b  if and only if  
 
   )()()()( :},...,2,1{ abba iiii fnotffnotfni ≥∧≥∈∀  

   ( )()()()( abba iiii fnotffnotf ≤∧≤ )    (7) 
 
The graphical interpretation of the above definition 
are presented in Figure 1. 
 

 
 

Figure 1. Possible relation in objective space [17] 
 
According to given relation between the solutions in 
objective space (Definitions 1-3), it is possible to 
define the Pareto optimality. However, the key issue 
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is specifying the concept of non-dominated decision 
vector [17]-[18]. 
 
Definition 4. A decision vector fXx ∈ is said to be 

non-dominated regarding to set fA X⊆ if and only 

if 
 
   xaa fAnot ∈∃ .                   (8) 
 
It means, that all decision vectors which are not 
dominated by another decision vector are called non-
dominated. Moreover, the Pareto optimality is 
defined as follows [17]. 
 
Definition 5. A decision vector x is said to be Pareto 
optimal if and only if x is non-dominated regarding 

fX . 

 
In the other words, when the decision vectors are 
non-dominated within the entire search space, they 
are denoted as Pareto optimal or efficient. Its 
graphical representation is called Pareto-optimal 
front or surface (see Figure 2).  
 

Nondominated solutions – 
Pareto Optimal set

Pareto front

Dominated 
solutions

OBJECTIVE FUNCTION 1

O
B

JE
C

T
IV

E
 F

U
N

C
T

IO
N

 2

0

Feasible region

 
 

Figure 2. Illustrative example of Pareto-optimal front 
for minimizing problem 
 
Moreover, when a set of choices and a way of 
valuing them are given, the Pareto front is the set of 
choices that are Pareto optimal (efficient). Regarding 
to the set of choices that are Pareto-optimal a 
decision maker can make tradeoffs within this set, in 
place of consideration the full range of every 
parameter. It means that the shape of the Pareto front 
indicates the nature of the trade-off between the 
different objective functions. 
In language of the statistical decision theory the 
above approach can be compare to an admissible 
decision rule. It is a rule for making a decision such 
that there is not any other rule that is always "better" 

than it. In general, the set of admissible rules  for 
most decision problems is large, sometimes infinite. 
Therefore, this is not a sufficient criterion to take into 
account a single rule, but should favor admissible 
rules. The Pareto-optimality gives a suggestion what 
decision maker can consider as optimal (maximal or 
minimal). 
 
2.2. Methods and algorithms for multi-
objective optimization 
 

The most frequently used multi-objective analytical 
deterministic or non-deterministic optimization 
methods are as follows: 

− Weighted Objective Methods; 
− Hierarchical Optimization Method; 
− Trade-Off Method; 
− Global Criterion Method; 
− Method of Distance Functions; 
− Min-Max Methods; 
− Goal Programming Method. 

 
The above approaches can provide general tools for 
solving optimization problems to obtain a global or 
an approximately global optimum. In the second case 
the better way to work out is using the evolutionary 
or genetic algorithms, such as: 

− Strength Pareto Evolutionary Algorithm 
(SPEA); 

− VEGA – Vector Evaluated Genetic Algortihm; 
− HLGA - Hajela and Lin’s Weighting-based 

Genetic Algorithm; 
− NPGA – Niched Pareto Genetic Algorithm. 

 
General operation of genetic or evolutionary 
algorithms is based on the following steps (see 
Figure 3):  

1. Initialization. 
2. Calculate fitness. 
3. Selection/Recombination/Mutations (parents 

and children). 
4. Finished. 

 
The simplified drawing showing the appearance of 
the basic genetic algorithm is presented in Figure 3. 
The data is represented by population of 
chromosomes, where each of them is composed of a 
string of bits (see Figure 3). 
 
In the paper the Strength Pareto Evolutionary 
Algorithm (SPEA) and its numerical realization [2], 
[17]-[18] is considered as a representative 
evolutionary algorithm. The basic notations for 
correct presentation of it are as follows: 
 t - number of generation, 
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tP  - population in generation t, 

tP  - external set in generation t, 

P′  - temporary external set, 
P′  - temporary population.  
 
Additionally, the following input parameters are 
given: 
N - population size, 
N - maximum size of external set, 
T - maximum number of generations, 

cp - crossing probability, 

mp - mutation probability, 

A- set of non-dominated solutions. 
 

 
 

Figure 3. Basic genetic/evolutionary algorithm [16] 
 
The Strength Pareto Evolutionary Algorithm [2], 
[15]: 
 
Step 1. Initialization: 
The initial population 0P  is generated according to 
procedure: 

a) To get item i. 
b) To add item i to set 0P .  

Next, the empty external set 0P  is generated, where 
t = 0. 
 
Step 2. The complement of the external set is done. 
Let P′ = tP  

a) To copy non-dominated items from 

population tP  to populationP′ . 

b) To remove dominated items from setP′ . 
c) To reduce the cardinality of the set P′  to 

value N , using clustering and the solution 
give into 1+tP . 

 
Step 3. Determination fit function. 

The value of the fit function F for items from sets tP  

and tP  can be found according to following 
procedure: 
The real value )1,0[∈S  is assigned for every item 

tPi ∈  (called power). This value is proportional to 

number of items tPj ∈ , which represents the 
solutions dominated by item i. 
The adaptation of item j is calculated as sum of all 
items from external set, represents solution 
dominated by item j, increased by 1. 
The aim of addition 1 is to ensure that items tPi ∈  
will have better value of fit function than items from 
set tP , i.e.  
 

   ,
1

)(
+

=
N

n
iS        (9) 

 
where: 

)(iS  - power of item i, 
n - number of items in population dominated by  
item i.  
 
It is assumed that value of fit function for item i is 
equal to his power, i.e. 
 
   )()( iSiF = .     (10) 
 
Step 4. Selection 
Let P′  = Ø. 
For i = 1,2,… k do 

a) To choose randomly two items tt PPji ∪∈, . 

b) If )()( jFiF <  then }{ iPP ∪′=′  else

}{ jPP ∪′=′ , under assumption that value 
of fit is minimizing. 

 
Step 5. Recombination. 
Let P ′′ =Ø. 
For i = 1,2,…N/2 do: 

a) To choose two items Pji ′∈,  and to remove 

it from P′ . 
b) To create items: lk ,  by crossing the items

ji, . 

c) To add items lk ,  to set P ′′  with probability

cp , else add items  ji,  to setP ′′ . 
 
Step 6. Mutation 
Let P ′′′ =Ø. 
For every item Pi ′′∈ do: 

a) To create item j by mutation the item i with 

probability mp . 
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b) To add item j to setP ′′′ . 
 
Step 7. Finished 
Let PPt

′′′=+1  and 1+= tt . If Tt ≥  

non-dominated solution from population 
finish else back to Step 2. 
 
The graphical representation of the above 
algorithm’s steps is shown in Figure 4
 

 

Figure 4. General steps in the SPEA [17
 
3. The knapsack problem 
 

The knapsack problem has been known 
a combinatorial optimization problem. The general  
description is based on given a set of items, each 
with a mass and a value. There is determined the 
number of each item to include in a collection so that 
the total weight is less than or equal to a given limit 
and the total value is as large as possible (according 
to (1)). The knapsack problem is a subset of NP
problems. It means that there is non
algorithm to solve this problem. Therefore, the 
knapsack problem has been modified many times. 
i.e. to form of the 0-1 knapsack problem. This 
modification allows for formulation of knapsack 
problem as multi-objective optimization problem.
 
3.1. The 0-1 knapsack problem –
notations 
 

Generally, a 0-1 knapsack problem consists
of items, weight and profit associated
item, and an upper bound for the 
knapsack. The main goal is to find
items which maximizes the profits 
items fit into the knapsack, i.e., the total
not exceed the given capacity [2], [11
This single-objective problem can
directly to the multi-objective case 
arbitrary number of knapsacks. Formally,
objective 0-1 knapsack problem can be
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 then return A – 

dominated solution from population tP  and 

The graphical representation of the above 
Figure 4. 

 

[17] 

known since 1897 as 
l optimization problem. The general  

description is based on given a set of items, each 
with a mass and a value. There is determined the 
number of each item to include in a collection so that 
the total weight is less than or equal to a given limit 

total value is as large as possible (according 
to (1)). The knapsack problem is a subset of NP-hard 
problems. It means that there is non-polynomial 
algorithm to solve this problem. Therefore, the 

modified many times. 
1 knapsack problem. This 

for formulation of knapsack 
objective optimization problem. 

– basic 

consists of a set 
associated with each 

 capacity of the 
find a subset of 
 and all selected 
total weight does 
11], [17], [18]. 

can be extended 
 by allowing an 

Formally, the multi-
can be defined in 

the following way [2], 
formula (2):  
Given a set of m  items and
with 
 
   =jip ,  profit of item j  according to knapsack 

   =jiw ,  weight of item j  according to knapsack 

   =ic  capacity of knapsack 
 

find a vector ( ,,, 21 xx= Kx
 

   ∑
=

=∈∀
m

1j

)( :},...,2,1{ ieni x

 
and for which ()(x ff =
maximum, where  
 

   ∑
=

⋅=
m

1j
ji,p)( ji xf x   

 
and 1=jx  if and only if when item 

 
3.2. The 0-1 knapsack problem solutions
 

The solutions of knapsack problem can be descri
in terms of a genetic or evolutionary methods. 
paper, the SPEA algorithm from Section 2.2., is 
proposed to solve the problem. 
program to find the solution of 
problem is implemented in C programm
with using PISA project
Computer Engineering and Networks Laboratory of 
ETH Zurich and available on website 
http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php
PISA is a text-based interface
It splits an optimization process into two modules. 
One module, called the Variator
specific to the optimization problem (e.g., 
knapsack problem). The second 
Selector, contains the parts of an optimization 
process which are independent of the optimization 
problem (mainly the selection process
These two modules are implemented as separate 
programs which communicate through text files
presented in Figure 5 [19]. 
 

 

Figure 5. The schema of PISA 
[19] 

1, 2015 

[17], [18] according to 

and a set of n  knapsacks, 

according to knapsack i , 

according to knapsack i , 

capacity of knapsack i , 

) { } ,1,0 m

mx ∈  such that 

∑ ≤⋅ji,w ij cx    (11) 

))(,),(),( 21 xxx nfff K  is 

  (12) 

if and only if when item j  is chosen. 

1 knapsack problem solutions 

problem can be described 
in terms of a genetic or evolutionary methods. In the 
paper, the SPEA algorithm from Section 2.2., is 
proposed to solve the problem. The computer 

find the solution of the 0-1 knapsack 
problem is implemented in C programming language 
with using PISA project codes, developed  in 
Computer Engineering and Networks Laboratory of 

available on website 
http://www.tik.ee.ethz.ch/sop/pisa/?page=pisa.php.  

based interface for search algorithms. 
splits an optimization process into two modules. 

Variator, contains all parts 
specific to the optimization problem (e.g., 0-1 

second module, called the 
contains the parts of an optimization 
ich are independent of the optimization 

problem (mainly the selection process, i.e. SPEA2). 
These two modules are implemented as separate 
programs which communicate through text files as is 

 

 

of PISA project components 
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There are the six text files that are a platform to 
exchange of data between the Variator (Knapsack) 
and the Selector (SPEA2). According to 
documentation of Knapsack module, the most 
important in common files is PISA_cfg file that 
consists the following parameters: 

- alpha - number of individuals in initial 
population;  

- mu - number of individuals selected as parents;  
- lambda - number of offspring individuals;  
- dim - number of objectives  

Unfortunately there are some limitations to the 
Knapsack module. It works only when mu == 
lambda. In the other hand, if an odd number is 
chosen for mu and lambda, the last individual in the 
mating pool (see Figure 4) can only undergo 
mutation, because it has no recombination partner. 
 
Additionally, two files of the parameters for both 
programs are available.  
In case of the Variator the parameters are as follows: 

- seed - seed for random number generator; 
- length - length of the binary string (length of the 

chromosome); 
- maxgen - maximum number of generations (stop 

criterion) 5 
- outputfile – name of file for output of the last 

population in archive, where one individual is 
written per line using the following format: 
ID (objective 1) (objective 2) ... (objective dim) 
bit-vector; 

- mutation_type – mutation type, where 0 = no 
mutation, 1 = one bit mutation, 2 = independent 
bit mutation; 

- recombination_type – recombination type, 
where 0 = no recombination, 1 = one point 
crossover, 2 = uniform crossover; 

- mutation_probability – probability that 
individual is mutated; 

- recombination_probability - probability that two 
individuals are recombined; 

- bit_turn_probability - probability, that bit is 
turned when mutation occurs only used for 
independent bit mutation. 

 
For the Selector (SPEA2) the following parameters 
are included: 

- seed - seed for random number generator; 
- tournament - parameter for number of the 

tournament selection.  
 
The computer program is implemented with 
accordance to formulae (1)-(12). 
 
 
 

4. Reliability of the two-state parallel-series 
system 
 

In the case of two-state reliability analysis of 
parallel-series systems we assume that [2], [4]: 

− n is the number of  system components, 
− ,ijE  ,,...,2,1 nki = ,,...,2,1 ilj =  are components 

of a system,  
− ijT  are independent random variables 

representing the lifetimes of components ,ijE  

,,...,2,1 nki = ,,...,2,1 ilj =  

− ),,0 ),()( ∞∈<>= ttTPtR ijij  is a reliability 

function of a component ,ijE  ,,...,2,1 nki =

,,...,2,1 ilj =  

− ),,0 ),()(1)( ∞∈<≤=−= ttTPtRtF ijijij  is the 

distribution function of the component ijE  

lifetime ijT , ,,...,2,1 nki = ,,...,2,1 ilj =  also 

called an unreliability function of a component 
,ijE  ,,...,2,1 nki = .,...,2,1 ilj =  

Moreover, we assume that components ,1iE  ,2iE …, 

,
iilE  ,,...,2,1 nki = create a parallel subsystem ,iS  

,,...,2,1 nki = and that these subsystems create a series 
system. 
 
Definition 6. A two-state system is called parallel-
series if its lifetime T is given by    
 
   T = }.max{min

11 ij
ljki

T
in ≤≤≤≤

     (13) 

 

According to above definition, the reliability 
function of the two-state parallel-series system is 
given by  
 

   ).,( ,)(1)(
1 1

,...,,1 ∞−∞∈







−= ∏ ∏

= =

ttFtR
n i

nkn

k

i

l

j
ijjllk  (14) 

 
5. 5. Multi-criteria methods for reliability 
optimization problem 
 

We assume that the two-state parallel-series system 
with three main units iS  is given ( 3,2,1=i ). Every 
unit is the parallel subsystem consists of maximum 
components which can be chosen to provide 
redundancy (see Figure 4). These maximal numbers 
are equal to: 

- 4, for unit 1S ; 

- 3, for unit 2S ; 

- 3, for unit 3S . 
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Figure 6. Exemplary scheme of a parallel-series 
system  
 
Every component of the system can have two states, 
functioning with the nominal capacity or total failure, 
corresponding to capacity 0. The main characteristics 
of these components are lifetime and cost. The 
exemplary system components are given in Table 1.  
 
Table 1. Exemplary characteristics of the system 
components 
 

Subsystem 
Component 

type 
Lifetime 

[h] 
Cost 

[USD] 

1 

1 350 9899 
2 840 11259 
3 255 6137 
4 190 4122 

2 
1 198 3818 
2 740 10016 
3 500 7213 

3 
1 960 10189 
2 180 4991 
3 607 15683 

 
In real world application, the main problem can be 
formulated as the question how to create new system 
or to redesign existing one for extending its time to 
failure as much as possible with a cost as low as 
possible. It means that the goal of the problem is to 
maximize the  time to failure of the system and to 
minimize the cost. This is the classical two-objective 
optimization. The solution of the problem can be 
done by a transformation the reliability problem to 
the 0-1 knapsack problem. This can be done, 
according to the Section 3, when the assumptions are 
as follows:  

- ic  is the time to failure of designed system; 

- jip ,  is the profit equal to lifetime of using 

the particular component;  
- jiw ,  is the cost of the component usage and 

installation. 
 
Furthermore, let us assume that a chromosome 
represents the reliability of whole system. In this 
chromosome the gen equal to 1 means that given 

component is into knapsack. On the other hand, the 
gen in this chromosome is equal to 0 means that this 
component is not in knapsack. The exemplary 
chromosome of the system is presented in Figure 5. 
The length of a chromosome is the number of the 
components, which are under investigation (number 
of system components, see Figure 7). 
 

Subsystem 1 Subsystem 2 Subsystem 3

1 0 0 0 0 0 1 0 1 0

Component 
type 1

Component 
type 3

Component 
type 3

 
 

Figure 7. Exemplary chromosome describes the 
system components 
 
The showcase of the possibility usage of the 
computer program is presented in Example. 
 
Example 
Let us take into account the two-state parallel-series 
system with three main units iS , where 3,2,1=i . 
Furthermore, the optimization of the time to failure 
according to minimal cost is needed to done. There is 
the set of components that can be selected to improve 
the system reliability. 
 
To solve above problem, the computer program 
proposed in Section 3.2. is used according to 
formulae (13) – (14). The five cases are considered 
for showing the capabilities of this program. In every 
case five generations of the algorithm (presented in 
Section 2.2.) are taken into account for program 
execution.  
To use the computer program, the following 
parameters for four cases commonly (Case 1-4) in 
configure file are fixed. In the case 5 two parameters 
are changed. 
 
The input file “PISA_CFG” for cases 1-4 is as 
follows: 
o alpha 50 
o mu 50 
o lambda 50 
o dim 2 

 
and for case 5 is given as 
o alpha 50 
o mu 20 
o lambda 20 
o dim 2 
 

E21 

E22 

E23 E33 

E31 

E32 

E14 

E11 

E12 

E13 
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The initial population for all considered cases (1 
is given in Table 2. It describes the set of 
components which can be used to improving the 
system reliability. 
The common parameters in 
“Knapsack_param.txt” are as follows:

o length 10 
o maxgen 5 
o mutation_probability 0.5 
o recombination_probability 0.5
o bit_turn_probability 0.05. 

 
Let us consider the following cases. 
Case 1: 

o mutation_type 1 
o recombination_type 1. 

Case 2: 
o mutation_type 1 
o recombination_type 2. 

Case 3: 
o mutation_type 2 
o recombination_type 2. 

Case 4: 
o mutation_type 2 
o recombination_type 1. 

Case 5: 
o mutation_type 2 
o recombination_type 2 
o mu 20 
o lambda 20. 

 
The mutation type and the recombination type are 
different in four proposed cases. The last one has the 
same types of mutation and recombination as case 3, 
but there are different parameters mu 
The results of execution of the progr
Tables 3-7 and are presented in Figures 8
 

 

Figure 8. Exemplary results for 5 generations
case 1 
 
 
 
 
 

Guze Sambor 
application of the SPEA algorithm to reliability multi -objective optimization

108

The initial population for all considered cases (1 – 5) 
. It describes the set of 

components which can be used to improving the 

The common parameters in the file 
are as follows: 

recombination_probability 0.5 

The mutation type and the recombination type are 
different in four proposed cases. The last one has the 
same types of mutation and recombination as case 3, 

mu and lambda.  
The results of execution of the program are given in 

Figures 8-12. 

 

Exemplary results for 5 generations –  

Table 2. PISA_INI – initials individuals
 

ID  Bit string 

0 0111000010 
1 0011110111 
2 0111111101 
3 0101101011 
4 1011000001 
5 1011010111 
6 1011000000 
7 0101101010 
8 1001000011 
9 0101000111 

10 0110000111 
11 0001110110 
12 1010011000 
13 1111011001 
14 1001001110 
15 1001111000 
16 1001111111 
17 0010010011 
18 0110010001 
19 1101110111 
20 1010110101 
21 0100101010 
22 0110011100 
23 1000100110 
24 0011010001 
25 1011110001 
26 0010111010 
27 1110011110 
28 0011110111 
29 1111001101 
30 1111110100 
31 0101110100 
32 0100001000 
33 0010110010 
34 1100011010 
35 0000111000 
36 1011101010 
37 1000010001 
38 1011101000 
39 1111011111 
40 0100110110 
41 0101111110 
42 0110101100 
43 1110010000 
44 0000111000 
45 0000011101 
46 1001111011 
47 0000000100 
48 0110010010 
49 1100001100 

 
 
 
 
 

objective optimization 

initials individuals 

Time to 
Failure 

Cost 
[USD] 

5460 42100 
4040 35000 
5010 37900 
4490 31100 
4760 39600 
4010 35900 
5630 46100 
4830 32000 
5260 37800 
4840 32900 
5600 43700 
4910 41500 
4870 39700 
4480 32300 
5470 35100 
4830 38800 
4430 31400 
5020 44000 
5070 44900 
4040 35000 
4550 44900 
5840 40100 
5280 42200 
6090 46800 
4590 42400 
4620 41500 
5260 40400 
5780 40400 
4040 35000 
5590 37600 
4960 42400 
4960 42400 
7470 52200 
4840 44900 
5780 40400 
5840 46900 
4280 32900 
5740 47100 
4860 39400 
4430 31400 
5390 44000 
5300 37900 
5340 41900 
5000 43300 
5840 46900 
5190 38600 
4430 31400 
7830 59600 
5360 44900 
6530 44100 
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Case 1. 
 
Table 3. Results of the computer program execution, 
where the grey rows are Pareto-optimal front – case 1 
 

ID  Bit string 
Time to 

Failure [h] 
Cost 

[USD] 

1 1011010001 5010 32700 
3 0101101011 4170 35900 
4 1100111011 4270 33100 
6 1111010111 5180 36700 
10 1001111111 4230 35600 
15 1011010001 5010 32700 
16 1001111111 4230 35600 
17 1011100001 4950 33000 
25 1111010011 5180 36700 
27 1001111111 4230 35600 
30 1011010001 5010 32700 
31 1011100001 4950 33000 
32 1001111111 4230 35600 
33 1011000111 4480 33900 
35 1001101010 4240 37500 
36 1011101010 4380 34100 
38 1011000111 4480 33900 
39 1111011111 4230 35600 
40 1111010111 5180 36700 
41 0101101011 4170 35900 
42 1111111111 4230 35600 
43 1111010000 4670 31800 
44 1011000110 4440 34800 
46 1001111011 4230 35600 
47 1001010111 4510 34500 
52 1011000011 4480 33900 
54 1001111011 4230 35600 
55 1011100001 4950 33000 
56 1011100101 4950 33000 
57 0011101011 4170 35900 
59 1111110011 4620 32000 
60 0101111111 4230 35600 
61 1011000110 4440 34800 
62 1011010001 5010 32700 
64 1011010001 5010 32700 
69 1001111011 4230 35600 
72 1011000110 4440 34800 
76 1001101010 4240 37500 
79 1011010111 4650 31100 
82 1011000111 4480 33900 
83 1011000110 4440 34800 
84 1001110011 4620 32000 
88 1111011011 4230 35600 
89 1111010111 5180 36700 
92 1011000011 4480 33900 
94 1101111011 4230 35600 
95 1001101011 4170 35900 
97 1001111011 4230 35600 
98 1011000111 4480 33900 
99 1011010011 4650 31100 

 
 
 

Case 2.  
 
Table 4. Results of the computer program, where the 
grey rows are Pareto-optimal front – case 2 
 

ID  Bit string Time to 
Failure [h] 

Cost 
[USD] 

2 1111100011 5120 37000 
3 0101101011 4170 35900 
4 1001010011 4510 34500 
11 0111100011 5120 37000 
13 1001011110 4300 37200 
14 1011100010 4660 33000 
16 1001111111 4230 35600 
18 1011100110 4660 33000 
23 0111100011 5120 37000 
25 1011100110 4660 33000 
28 1011010001 5010 32700 
29 1001010011 4510 34500 
31 1001011110 4300 37200 
33 1001100111 4450 34800 
34 1001010011 4510 34500 
39 1111011111 4230 35600 
40 1011100110 4660 33000 
43 1011000110 4440 34800 
44 1001100011 4450 34800 
45 1011100110 4660 33000 
46 1001111011 4230 35600 
47 0111010011 5180 36700 
50 1011100110 4660 33000 
54 0011101011 4170 35900 
56 0111100011 5120 37000 
57 0111100011 5120 37000 
60 1001010011 4510 34500 
62 1001010111 4510 34500 
63 1111100011 5120 37000 
64 0111100011 5120 37000 
66 1011100110 4660 33000 
68 1111011111 4230 35600 
70 1011100110 4660 33000 
71 1001011111 4230 35600 
74 1001100111 4450 34800 
75 1011010010 4720 32700 
79 0111100011 5120 37000 
80 1001100111 4450 34800 
81 1001101111 4170 35900 
83 1011010101 5010 32700 
84 1001010011 4510 34500 
85 1011100010 4660 33000 
88 1001010011 4510 34500 
90 0111100111 5120 37000 
93 1001010011 4510 34500 
94 1011010001 5010 32700 
95 0001101111 4170 35900 
97 1011100110 4660 33000 
98 1001011110 4300 37200 
99 1001011110 4300 37200 
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Case 3. 
 
Table 5. Results of the computer program, where t
grey rows are Pareto-optimal front – case 3
 

ID  Bit string Time to 
Failure [h]  

4 1011100110 4660 
6 1001101010 4240 
7 1011010110 4720 
8 1111010111 5180 
11 1011101010 4380 
12 1011011110 4440 
13 1001011110 4300 
15 1011010101 5010 
18 1011101010 4380 
20 1011010110 4720 
25 1011101010 4380 
26 1001101010 4240 
27 1011010110 4720 
28 1001011010 4300 
29 1011010110 4720 
31 1001011010 4300 
32 1001011110 4300 
33 1011010110 4720 
34 1001011110 4300 
36 1011101010 4380 
43 1011010110 4720 
44 1011100110 4660 
45 1011010110 4720 
47 1011101010 4380 
51 1011000111 4480 
52 1011101010 4380 
53 1011100110 4660 
54 1011010110 4720 
57 1011101010 4380 
58 1011100110 4660 
59 1001101010 4240 
60 0011101010 4380 
61 1011101010 4380 
64 1011101010 4380 
65 1011010110 4720 
69 1011011110 4440 
70 1011100110 4660 
72 1011000111 4480 
73 1001011110 4300 
74 1011010010 4720 
76 1011101010 4380 
77 1001011110 4300 
80 1011000111 4480 
82 1011101110 4380 
83 1011010001 5010 
84 1011100110 4660 
86 1011100110 4660 
94 1011000111 4480 
96 1111010111 5180 
99 1001011110 4300 
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. Results of the computer program, where the 
case 3 

 
Cost 

[USD] 

33000 
37500 
32700 
36700 
34100 
33800 
37200 
32700 
34100 
32700 
34100 
37500 
32700 
37200 
32700 
37200 
37200 
32700 
37200 
34100 
32700 
33000 
32700 
34100 
33900 
34100 
33000 
32700 
34100 
33000 
37500 
34100 
34100 
34100 
32700 
33800 
33000 
33900 
37200 
32700 
34100 
37200 
33900 
34100 
32700 
33000 
33000 
33900 
36700 
37200 

 

Figure 9. Exemplary results for 5 generations
case 2 
 

 

Figure 10. Exemplary results for 5 generations
case 3 
 

 

Figure 11. Exemplary results for 5 generations
case 4 
 

 

Figure 12. Exemplary results for 5 
case 5 

objective optimization 

 

Exemplary results for 5 generations – 

 

Exemplary results for 5 generations – 

 

Exemplary results for 5 generations – 

 

Exemplary results for 5 generations – 
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Case 4.  
 
Table 6. Results of the computer program, where the 
grey rows are Pareto-optimal front 
 

ID  Bit string 
Time to 

failure [h]  
Cost 

[USD] 

1 0011110111 4620 32000 
5 1011010111 4650 31100 
6 0101101110 3830 35000 
8 1111010111 5180 36700 
9 1111010111 5180 36700 
10 1011010110 4720 32700 
11 0101110111 4620 32000 
12 0101110111 4620 32000 
13 1001101111 4170 35900 
19 1101110111 4620 32000 
22 1111010111 5180 36700 
28 0011110111 4620 32000 
31 1011010111 4650 31100 
32 1001010011 4510 34500 
33 1101110111 4620 32000 
34 0011110111 4620 32000 
35 0101110111 4620 32000 
36 1011101010 4380 34100 
37 0011110111 4620 32000 
43 0011110111 4620 32000 
44 0011110111 4620 32000 
45 1101110111 4620 32000 
48 1011110111 4620 32000 
49 0011101110 4380 34100 
51 1011010111 4650 31100 
52 1011101010 4380 34100 
53 0111100111 5120 37000 
55 0101110111 4620 32000 
56 0101110111 4620 32000 
59 1011010111 4650 31100 
61 1101110111 4620 32000 
64 1001110111 4620 32000 
65 1011010111 4650 31100 
67 1011010111 4650 31100 
69 1001101110 4240 37500 
70 1111010111 5180 36700 
71 1111010111 5180 36700 
72 0111110111 4620 32000 
74 0001110111 4620 32000 
75 0101110111 4620 32000 
79 1101110111 4620 32000 
80 1111110111 4620 32000 
81 1001101110 4240 37500 
82 1001101110 4240 37500 
83 0011110111 4620 32000 
86 1001101110 4240 37500 
88 0111110111 4620 32000 
94 0111111111 4230 35600 
95 1101110111 4620 32000 
98 1101110111 4620 32000 

 

Case 5.  
 
Table 7. Results of the computer program, where the 
grey rows are Pareto-optimal front 
 

ID  Bit string 
Time to 

failure [h] 
Cost 

[USD] 

0 0101101010 3830 35000 
1 0011110111 4620 32000 
3 0101101011 4170 35900 
5 1011010111 4650 31100 
6 1011010111 4650 31100 
7 0101101010 3830 35000 
12 1010110111 4690 28600 
13 1111011001 4180 34700 
14 1011100010 4660 33000 
16 1001111111 4230 35600 
17 0101110111 4620 32000 
18 0011110111 4620 32000 
19 1101110111 4620 32000 
20 0101101011 4170 35900 
22 0101101011 4170 35900 
23 1011010111 4650 31100 
27 1111011111 4230 35600 
28 0011110111 4620 32000 
29 1101110111 4620 32000 
30 1001111011 4230 35600 
31 1011010101 5010 32700 
32 0101101011 4170 35900 
33 1001110111 4620 32000 
34 1011010101 5010 32700 
35 1101110111 4620 32000 
36 1011101010 4380 34100 
37 1011100010 4660 33000 
38 0101110011 4620 32000 
39 1111011111 4230 35600 
40 0001111011 4230 35600 
41 0111100011 5120 37000 
42 1011010111 4650 31100 
43 1011010101 5010 32700 
45 0011111111 4230 35600 
46 1001111011 4230 35600 
47 1111011111 4230 35600 
48 1011010101 5010 32700 
49 1010110111 4690 28600 
51 0101101010 3830 35000 
52 1011101010 4380 34100 
53 1101110111 4620 32000 
54 0101101010 3830 35000 
55 0111101011 4170 35900 
56 0111101011 4170 35900 
57 0001110111 4620 32000 
61 0101101010 3830 35000 
62 1101110111 4620 32000 
63 0011110111 4620 32000 
65 1011010111 4650 31100 
67 0011111111 4230 35600 
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According to the results given in Tables 3-7 and 
shown graphically in Figures 8-12 the exemplary 
structures of the two-state parallel-series are 
presented in Figures 13-17. 
 

Component type 1

Compoment type 2

Component type 3

Component type 4

Component type 2

Component type 3

Component type 2

Component type 1

 
 

Figure 13. Example of the system structure 
according to results of the optimization in Case 1 
 

Component type 2

Component type 3

Component type 4

Component type 1

Component type 3

Component type 2

 
 

Figure 14. Example of the system structure 
according to results of the optimization in Case 2 
 

Component type 1

Component type 3

Component type 4

Component type 2 Component type 3

 
 

Figure 15. Example of the resulting system structure 
according to results of optimization in Case 3 
 

Component type 4

Component type 2

Component type 1

Component type 3

Component type 2

Component type 1

 
 

Figure 16. Example of the system structure 
according to results of the optimization in Case 4 

 

Component type 1

Component type 3 Component type 2

Component type 1

Component type 3

Component type 2

Component type 1

 
 

Figure 17. Example of the system structure 
according to results of the optimization in Case 5 
 
These selected figures indicate a variety of 
opportunities to redesign the considered system with 
accordance to the time to failure and cost. Numerical 
data for these two objectives is given in Tables 3-7. 
 
6. Conclusions 
 

The SPEA algorithm and the binary knapsack 
problem have been described.  The computer 
program to solve this problem based on this 
algorithm has been presented. Furthermore, the 
conversion of the reliability optimization problem to 
the 0-1 knapsack optimization problem has been 
proposed. Finally, the application of the computer 
program to the multi-criteria optimization for 
reliability problem has been done. The methods, 
algorithms and computer program presented in the 
paper can be applied to the reliability and safety 
optimization. The example in Section 5 has only 
shown potential applications of proposed computer 
program. In the future the extension of the 
capabilities of computer program for multi-objective 
optimization of the multi-state systems reliability 
should be done. 
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