PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Use of 3d optical techniques in the analysis of the effect of adding rubber recyclate to the matrix on selected strength parameters of epoxy–glass composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents a method of modifying the strength properties of epoxy–glass composite by changing the percentage composition of the matrix by the addition of rubber recyclate. Taking into account environmental protection and economic conditions in the process of recycling and utilisation of waste, it is advisable to look for applications of non-degradable waste materials. Based on epoxy resin, a glass mat with a random direction of fibres and rubber recyclate, a test material with different percentage compositions was produced. Samples from the manufactured materials were subjected to a static tensile test on a ZwickRoell testing machine using the ARAMIS SRX measuring system. In addition, CT (computerized tomography) scans of the inside of the samples were made using a ZEISS METROTOM 6 Scout tomograph, and observations of the internal structures were made using a scanning electron microscope. The use of optical and microscopic techniques enabled the precise determination of strength parameters of the examined composites and the analysis of the behaviour of samples under load. The analysis of deformations over time in the examined samples showed a beneficial effect of the addition of rubber recyclate on the elastic properties of the examined composites.
Rocznik
Strony
333--346
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia Poland
autor
  • Construction Laboratory, Faculty of Civil Engineering and Architecture, Lublin University of Technology, ul. Nadbystrzycka 40, 20-618 Lublin, Poland
autor
  • Faculty of Mechanical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia Poland
  • Faculty of Mechanical Engineering, Gdynia Maritime University, ul. Morska 81-87, 81-225 Gdynia Poland
Bibliografia
  • 1. Abtew MA, Boussu F, Bruniaux P, Loghin C, Cristian I. Ballistic impact mechanisms – A review on textiles and fibre-reinforced com-posites impact responses. Composite Structures. 1 wrzesień 2019;223:110966.
  • 2. Sienkiewicz M. Kompozyty poliuretanowo-gumowe otrzymane przy udziale recyklatów gumowych jako sposób na zagospodarowanie poużytkowych opon samochodowych. Politechnika Gdańska; 2010.
  • 3. Lopacka J. Nanocząstki wykorzystywane w celu poprawy w\laściwości fizycznych kompozytów polimerowych stosowanych ja-ko materia\ly opakowaniowe do żywności. Polimery. 2013;58 (11–12):864–8.
  • 4. Andrzej Wilczyński. Polimerowe kompozyty włókniste. Warszawa: Wydawnictwo Naukowo Techniczne; 1996.
  • 5. Golewski P, Sadowski T. A novel application of alumina fiber mats as TBC protection for CFRP/epoxy laminates –Laboratory tests and numerical modeling. Journal of the European Ceramic Society. 2018;38(8):2920–7.
  • 6. A.A. Nayeeif , Z.K. Hamdan, Z.W. Metteb, F.A. Abdulla, N.A. Jebur. Natural filler based composite materials. 1 lipiec 2022;116(1):5–13.
  • 7. Dębska B, Lichołai L, Miąsik P. Assessment of the Applicability of Sustainable Epoxy Composites Containing Waste Rubber Aggre-gates in Buildings. Buildings [Internet]. 2019;9(2). Dostępne na: https://www.mdpi.com/2075-5309/9/2/31
  • 8. Żuk D, Abramczyk N, Drewing S. Investigation of the influence of recyclate content on Poisson number of composites. Science and Engineering of Composite Materials. 2021;28(1):668–75.
  • 9. Marta Chojnacka. Zastosowanie kopolimerów blokowych i recyklatów gumowych do modyfikacji asfaltów. 2012;TOM 16.
  • 10. Parasiewicz W., Pyskło L., Magryta J., Recykling zużytych opon samochodowych. Instytut Przemysłu Gumowego „STOMIL”, Piastów 2005.
  • 11. Al-Shablle M, Al-Waily M, Njim E. Analytical evaluation of the influ-ence of adding rubber layers on free vibration of sandwich structure with presence of nano-reinforced composite skins. Archives of Mate-rials Science and Engineering. 2022;116(2):57–70.
  • 12. Jweeg M, Alazawi D, Jebur Q, Al-Waily M, Yasin N. Hyperelastic modelling of rubber with multi-walled carbon nanotubes subjected to tensile loading. 2021;108(2):75–85.
  • 13. Valášek P, Žarnovskỳ J, Müller M. Thermoset composite on basis of recycled rubber. W: Advanced materials research. Trans Tech Publ; 2013. s. 67–73.
  • 14. Luo J, Dai CY, Wang Z, Liu K, Mao WG, Fang DN, i in. In-situ meas-urements of mechanical and volume change of LiCoO2 lithium-ion batteries during repeated charge–discharge cycling by using digital image correlation. Measurement. 2016;94:759–70.
  • 15. Gljušćić M, Franulović M, Lanc D, Božić Ž. Digital image correlation of additively manufactured CFRTP composite systems in static ten-sile testing. Procedia Structural Integrity. 2021;31:116–21.
  • 16. Kneć M, Sadowski T, Balawender T. Technological problems and experimental investigation of hybrid: clinched-adhesively bonded joint. Archives of Metallurgy and Materials. 2011;(2).
  • 17. Nelson TM, Quiros KAM, Mariano CA, Sattari S, Ulu A, Dominguez EC, i in. Associating local strains to global pressure–volume mouse lung mechanics using digital image correlation. Physiological Re-ports. 2022;10(19):e15466.
  • 18. Lusiak T, Knec M. Use of ARAMIS for Fatigue Process Control in the Accelerated Test for Composites. Transportation Research Procedia. 2018;35:250–8.
  • 19. Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T, Nakai H, i in. Full-field strain measurements for validation of meso-FE analysis of textile composites. Composites Part A: Applied Science and Manu-facturing. 2008;39(8):1218–31.
  • 20. Le AT, Gacoin A, Li A, Mai TH, Wakil NE. Influence of various starch/hemp mixtures on mechanical and acoustical behavior of starch-hemp composite materials. Composites Part B: Engineering. 2015;75:201–11.
  • 21. Nag-Chowdhury S, Bellégou H, Pillin I, Castro M, Longrais P, Feller JF. Crossed investigation of damage in composites with embedded quantum resistive strain sensors (sQRS), acoustic emission (AE) and digital image correlation (DIC). Composites Science and Technology. 2018;160:79–85.
  • 22. Paul SC, Pirskawetz S, Zijl GPAG van, Schmidt W. Acoustic emis-sion for characterising the crack propagation in strain-hardening ce-ment-based composites (SHCC). Cement and Concrete Research. 2015;69:19–24.
  • 23. Zhang Z, Richardson M. Structural integrity evaluation of impacted glass fibre reinforced polyester composites using Optical deformation and Strain Measurement system (ARAMIS). W: ACMC/SAMPE Con-ference on Marine Composites, Plymouth, 11-12 September 2003. University of Plymouth; 2003. s. 99–106.
  • 24. Golewski GL. Estimation of the optimum content of fly ash in con-crete composite based on the analysis of fracture toughness tests using various measuring systems. Construction and Building Materi-als. 2019;213:142–55.
  • 25. Grynkiewicz-Bylina B, Rakwic B, Słomka-Słupik B. Tests of rubber granules used as artificial turf for football fields in terms of toxicity to human health and the environment. Scientific Reports. 23 kwiecień 2022;12(1):6683.
  • 26. https://orzelsa.com/wp-content/uploads/2020/10/Karta-techniczna-1-3-mm.pdf.
  • 27. Liang S, Gning PB, Guillaumat L. A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Composites Science and Technology. t. 72, nr 5, s. 535–543, 2012, doi: https://doi.org/10.1016/j.compscitech.2012.01.011.
  • 28. Koricho EG, Belingardi G, Beyene AT. Bending fatigue behavior of twill fabric E-glass/epoxy composite. Composite Structures. t. 111, s. 169–178, 2014, doi: https://doi.org/10.1016/j.compstruct.2013.12.032.
  • 29. Bhatnagar A. Lightweight Ballistic Composites: Military and Law-Enforcement Applications. Elsevier Science, 2016. [Online]. Dostępne na: https://books.google.pl/books?id=qZPBCQAAQBAJ
  • 30. Chatterjee VA, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Enhancement of energy absorption by incorporation of shear thicken-ing fluids in 3D-mat sandwich composite panels upon ballistic impact. Composite Structures. t. 225, s. 111148, 2019, doi: https://doi.org/10.1016/j.compstruct.2019.111148.
  • 31. Abdel-Magid B, Ziaee S, Gass K, Schneider M. The combined effects of load, moisture and temperature on the properties of E-glass/epoxy composites. Composite Structures, t. 71, nr 3, s. 320–326, 2005, doi: https://doi.org/10.1016/j.compstruct.2005.09.022.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-425467c7-cc93-4f16-8ae7-d9423f057f3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.