PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rooftop Low Angle Tilted Photovoltaic Installation Under Polish Climatic Conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The performance of a 15 kWp roof mounted, low angle tilted photovoltaic installation over the year 2019 has been analyzed in terms of the role of solar irradiation, ambient and module temperature, clouds cover and wind speed. The studied photovoltaic system operates under warm summer humid continental climate with the considerable influence of temperate oceanic zone. The role of significant changes of weather conditions in warm and cold part of the year has been shown. The negative impact of external temperature increase on the modules efficiency has been observed. The experimentally determined temperature coefficient of efficiency of the modules is equal to -0.06%/°C. Relatively high sum of insolation registered in the location in 2019 together with a lack of shade assure annual energy yield of 1098 kWh/kWp, energy density 188 kWh/m2, capacity factor 12.53% and performance ratio 82%.
Rocznik
Strony
223--233
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
autor
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. Adaramola M.S., Vågnes E.E.T. 2015. Preliminary assessment of a small-scale rooftop PV-grid tied in Norwegian climatic conditions. Energy Conversion and Management, 90, 458-465. DOI: 10.1016/j.enconman.2014.11.028.
  • 2. Alghamdi A.S. 2019. Potential for RooftopMounted PV Power Generation to Meet Domestic Electrical Demand in Saudi Arabia: Case Study of a Villa in Jeddah. Energies, 12, 4411. DOI: 10.3390/en12234411.
  • 3. Allouhi A., Saadani R., Buker M.S., Kousksou T., Jamil A., Rahmoune M. 2019. Energetic, economic and environmental (3E) analyses and LCOE estimation of three technologies of PV grid-connected systems under different climates. Solar Energy, 178, 25-36. DOI: 10.1016/j.solener.2018.11.060.
  • 4. Ayompe L.M., Duffy A., McCormack S.J, Conlon M. 2011. Measured performance of a 1.72 kW rooftop grid connected photovoltaic system in Ireland. Energy Conversion and Management, 52, 816–825. DOI: 10.1016/j.enconman.2010.08.007.
  • 5. Belluardo G., Ingenhoven P., Sparber W., Wagner J., Weihs P., Moser D. 2015. Novel method for the improvement in the evaluation of outdoor performance loss rate in different PV technologies and comparison with two other methods. Solar Energy, 117, 139–152. DOI: 10.1016/j.solener.2015.04.030.
  • 6. Dirnberger D., Blackburn G., Müler B., Reise C. 2015. On the impact of solar spectral irradiance on the yield of different PV technologies. Solar Energy Materials and Solar Cells, 132, 431–442. DOI: 10.1016/j.solmat.2014.09.034.
  • 7. Do Nascimento L.R., Braga M., Campos R.A., Naspolini H.F., Rüther R. 2020. Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil. Renewable Energy, 146, 1070–1082. DOI: 10.1016/j.renene.2019.06.160.
  • 8. Dragan P., Zdyb A. 2017. Reduction of Pollution Emission by Using Solar Energy in Eastern Poland. Journal of Ecological Engineering, 18, 231–235.
  • 9. Elibol E., Özmen Ö.T., Tutkun N., Köysal O. 2017. Outdoor performance analysis of different PV panel types. Renewable and Sustainable Energy Reviews, 67, 651-661. DOI: 10.1016/j.rser.2016.09.051.
  • 10. Gaglia A.G., Lykoudis S., Argiriou A.A., Balaras C.A., Dialynas E. 2017. Energy efficiency of PV panels under real outdoor conditions: An experimental assessment in Athens, Greece. Renewable Energy, 101, 236–243. DOI: 10.1016/j.renene.2016.08.051.
  • 11. Green M., Dunlop E., Hohl-Ebinger J., Yoshita M., Kopidakis N., Hao X. 2021. Solar cell efficiency tables (version 57). Progress in Photovoltaics, 29, 3-15. DOI: org/10.1002/pip.3371.
  • 12. Gułkowski S., Zdyb A., Dragan P. 2019. Experimental efficiency analysis of a photovoltaic system with different module technologies under temperate climate conditions. Applied Sciences, 9, 141. DOI: 10.3390/app9010141.
  • 13. International Energy Agency https://www.iea.org.
  • 14. Kumar B.S., Sudhakar K. 2015. Performance assessment of 10 MW grid connected solar photovoltaic power plant in India. Energy Report, 1, 184-192. DOI: 10.1016/j.egyr.2015.10.001.
  • 15. Kunaifi, K., Reinders, A., Lindig, S., Jaeger, M., Moser, D. 2020. Operational Performance and Degradation of PV Systems Consisting of Six Technologies in Three Climates. Appl. Sci., 10, 5412. DOI: 10.3390/app10165412.
  • 16. Kymakis E., Kalykakis S., Papazoglou T.M. 2009. Performance analysis of a grid connected photovoltaic park on the island of Crete. Energy Conversion and Management, 50, 433–438. DOI: 10.1016/j.enconman.2008.12.009.
  • 17. Lorenzo E., Moretón R., Luque I. 2014. Dust effects on PV array performance: In-field observations with non-uniform patterns. Progress of Photovoltaics Research and Applications, 22, 666–670. DOI: 10.1002/pip.2348.
  • 18. Louwen A., de Waal A.C., Schropp R.E.I., Faaij A.P.C., van Sark W.G.J.H.M. 2017. Comprehensive characterization and analysis of PV module performance under real operating conditions. Progress of Photovoltaics Research and Applications, 25, 218–232. DOI: 10.1002/pip.2848.
  • 19. Nour-eddine I.O., Lahcen B., Fahd O.H., Amin B., Aziz O. 2020. Outdoor performance analysis of different PV technologies under hot semi-arid climate. Energy Reports, 6, 36-48. DOI: 10.1016/j.egyr.2020.08.023.
  • 20. Photovoltaics Report. Fraunhofer Institute for Solar energy Systems 2020 https://www.ise.fraunhofer.de.
  • 21. Quansah D.A., Adaramola M.S., Appiah G.K., Edwin I.A. 2017. Performance analysis of different grid-connected solar photovoltaic (PV) system technologies with combined capacity of 20 kW located in humid tropical climate. International Journal of Hydrogen Energy, 42, 4626-4635. DOI: 10.1016/j.ijhydene.2016.10.119.
  • 22. Photovoltaics Report. 2020. Fraunhofer Institute for Solar energy Systems. https://www.ise.fraunhofer.de
  • 23. Romero-Fiances I., Muñoz-Cerón E., EspinozaParedes R., Nofuentes G., de la Casa J. 2019. Analysis of the Performance of Various PV Module Technologies in Peru. Energies, 12, 186–205. DOI: 10.3390/en12010186.
  • 24. Seme S., Sredenšek K., Štumberger B., Hadžiselimović M. 2019. Analysis of the performance of photovoltaic systems in Slovenia, Solar Energy, 180, 550-558. DOI: 10.1016/j.solener.2019.01.062.
  • 25. Zdyb A., Gulkowski S. 2020. Performance Assessment of Four Different Photovoltaic Technologies in Poland. Energies, 13, 196. DOI: 10.3390/en13010196.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4253fc0e-3397-4e17-b0a3-3af0d1b602cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.