Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this article is to construct univariate Bernstein-type operators (BxmG)(x,z) and (BznG)(x,z), their products (PmnG)(x,z) , (QnmG)(x,z) , and their Boolean sums (SmnG)(x,z) , (TnmG)(x,z) on elliptic region, which interpolate the given real valued function G defined on elliptic region on its boundary. The bound of the remainders of each approximation formula of corresponding operators are computed with the help of Peano’s theorem and modulus of continuity, and the rate of convergence for functions of Lipschitz class is computed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220199
Opis fizyczny
Bibliogr. 26 poz., rys.
Twórcy
autor
- Departement of Mathematics, Aligarh Muslim University, Aligarh 202002, India
autor
- Departement of Mathematics, Aligarh Muslim University, Aligarh 202002, India
autor
- Departement of Mathematics, Aligarh Muslim University, Aligarh 202002, India
- Department of Medical Research, China Medical University Hospital, China Medical University (Taiwan), Taichung, Taiwan
Bibliografia
- [1] S. N. Bernstein, Constructive proof of Weierstrass approximation theorem, Comm. Kharkov Math. Soc. 13 (1912), 1–2.
- [2] R. E. Barnhill, G. Birkhoff and W. J. Gordon, Smooth interpolation in triangle, J. Approx. Theory 8 (1973), no. 2, 114–128.
- [3] R. E. Barnhill and J. A. Gregory, Polynomial interpolation to boundary data ontriangles, Math. Comp. 29 (1975), no. 131, 726–735.
- [4] R. E. Barnhill and J. A. Gregory, Sard kernel theorems on triangular domains with application to finite element error bounds, Numer. Math. 25 (1975), 215–229, DOI: https://doi.org/10.1007/BF01399411.
- [5] D. D. Stancu, Evaluation of the remainder term in approximation formulas by Bernstein polynomials, Math. Comp. 17 (1963), no. 83, 270–78, DOI: https://doi.org/10.2307/2003844.
- [6] D. D. Stancu, The remainder of certain linear approximation formulas in two variables, SIAM Numer. Anal. Ser. B 1 (1964), 137–163.
- [7] T. Cătinaş, Extension of some particular interpolation operators to a triangle with one curved side, Appl. Math. Comput. 315 (2017), 286–297.
- [8] Q. B. Cai and W. T. Cheng, Convergence of λ-Bernstein operators basedon ( )p q, -integers, J. Ineq. App. 1 (2020), 1–17.
- [9] Q. B. Cai, B. Y. Lian, and G. Zhou, Approximation properties of λ-Bernstein operators, J. Ineq. App. 1 (2018), 1–11.
- [10] N. Braha, T. Mansour, M. Mursaleen, and T. Acar, Convergence of λ-Bernstein operators via power series summability method, J. Appl. Math. Comput. 65 (2021), 125–146.
- [11] M. Mursaleen, K. J. Ansari, and A. Khan, Approximation properties and error estimation of q-Bernstein shifted operators, Numer. Algor. 84 (2020), no. 1, 207–227.
- [12] M. Mursaleen and A. Khan, Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces Appl. 2013 (2013), DOI: http://dx.doi.org/10.1155/2013/719834.
- [13] Kh. Khan, D. K. Lobiyal and A. Kiliçman, Bézier curves and surfaces based on modified Bernstein polynomials, Azerb. J. Math. 9 (2019), 1.
- [14] Kh. Khan and D. K. Lobiyal, Bézier curves based on Lupaş ( )p q, -analogue of Bernstein function in CAGD, Jour. Comput. Appl. Math. 317 (2017), 458–477, DOI: https://doi.org/10.1155/2021/6637893.
- [15] A. Khan, M. S. Mansoori, K. Khan, and M. Mursaleen, Phillips-type q-Bernstien operators on triangles, J. Funct. Spaces 2021 (2021), 13, DOI: https://doi.org/10.1155/2021/6637893.
- [16] A. Rababah and S. Manna, Iterative process for G2-multi degree reduction of Bé zier curves, Appl. Math. Comput. 217 (2011), no. 20, 8126–8133.
- [17] F. A. M. Ali, S. A. A. Karim, A. Saaban, M. K. Hasan, A. Ghaffar, K. S. Nisar, et al., Construction of cubic timmer triangular patches and its application in scattered data interpolation, Mathematics 8 (2020), no. 2, 159.
- [18] A. Ghaffar, M. Iqbal, M. Bari, S. M. Hussain, R. Manzoor, K. S Nisar, et al., Construction and application of nine-tic B-spline tensor product SS, Mathematics 7 (2019), no. 8, 675.
- [19] R. E. Barnhill, Surfaces in computer aided geometric design: survey with new results, Comput. Aided Geom. Desig. 2 (1985), no. 1, 1–17.
- [20] P. Blaga and G. Coman, Bernstein-type operators on triangles, Rev. Anal. Numér. Théor. Approx. 38 (2009), no. 1, 11–23.
- [21] T. Acar, A. Aral, and I. Raşa, Iterated Boolean sums of Bernstein type operators, Numer. Funct. Anal. Optim. 41 (2020), no. 12, 1515–1527.
- [22] P. Radu, Durrmeyer type operators on a simplex, Constr. Math. Anal. 4 (2021), no. 2, 215–228.
- [23] H. Karsali, Approximation results for Urysohn type two dimensional nonlinear Bernstein operators. Constr. Math. Anal. 1 (2018), no. 1, 45–57.
- [24] T. Acar and A. Kajla, Degree of approximation for bivariate generalized Bernstein type operators, Results Math. 73 (2018), no. 2, 1–20.
- [25] T. Acar and A. Aral, Approximation properties of two dimensional Bernstein-Stancu-Chlodowsky operators, Le Matematiche 68 (2013), no. 2, 15–31.
- [26] A. Khan, M. S. Mansoori, K. Khan, and M. Mursaleen, Lupaş type Bernstein operators on triangles based on quantum analogue, Alex. Eng. J 60 (2021), no. 6, 5909–5919, DOI: https://doi.org/10.1016/j.aej.2021.04.038.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4249fc98-52ae-42f5-b5aa-1f9d655458d2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.