Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Car accidents are the leading cause of death, with 1.2 million deaths each year, despite improvements in car safety, and forecasts indicate that road traffic fatalities will increase significantly by 2030 due to the increasing number of cars. This trend requires increased passive safety in car design. During independent crash tests that test the side safety of the driver and passengers, the impact energy is distributed and absorbed by the side sills, door pillars and safety bars located inside the doors. Unfortunately, there are no crash tests between cars of different mass and dimensions, for example, when a passenger car is hit from the side by an SUV. The main problem is that the height of the crossbar with crash boxes in an SUV is higher than the safety bars in the doors of a passenger car. Thus, it is difficult to predict the distribution of kinetic energy of the impact and the degree of injury to the driver and passengers of a passenger vehicle. A study of experimental emergency body lifting systems based on an electro-mechanical system and a hydropneumatic system at the moment of a side impact has been conducted. Such a system allows for 0.5 seconds to raise the car body to a height of 85 millimeters relative to the zero position and reduce injuries by 50% on the side where the side impact will occur. Using mathematical modeling, the functioning of the system and the possibility of implementing an emergency body lifting system based on a pneumatic suspension system were analyzed.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
art. no. 2025409
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
autor
- Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
autor
- Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
autor
- Department of Automobiles, Kharkiv National Automobile and Highway University, Ukraine
Bibliografia
- 1. Number of cars sold worldwide from 2010 to 2023, with a 2024 forecast. https://www.statista.com/statistics/200002/internation al-car-sales-since-1990. (date of access 02.09.2024).
- 2. Total Worldwide Passenger Cars Sales. https://www.goodcarbadcar.net/worldwide-car-salesby-country-all-years. (date of access 02.09.2024).
- 3. Road safety annual report 2021. https://www.itfoecd.org/sites/default/files/docs/irtad-road-safetyannual-report-2021.pdf. (date of access 12.09.2024).
- 4. Road safety annual report 2022. https://www.itfoecd.org/sites/default/files/docs/irtad-road-safetyannual-report-2022.pdf. (date of access 12.09.2024).
- 5. Road safety annual report 2023. https://www.itfoecd.org/sites/default/files/docs/irtad-road-safetyannual-report-2023.pdf. (date of access 12.09.2024).
- 6. Frequency of Injuries in Multiple Impact Crashes, https://pmc.ncbi.nlm.nih.gov/articles/PMC3217534/. (date of access 25.09.2024).
- 7. Characteristics of passenger car side to pole impacts - analysis of German and UK In-depth data using different approaches. https://bast.opus.hbznrw.de/opus45-bast/frontdoor/deliver/index/docId/464/file/Characteri stics_of_Passenger_Car_Side_to_Pole_Impacts_.pdf (date of access 25.09.2024).
- 8. Early Estimate of motor vehicle traffic fatalities in 2020, Traffic Safety Facts: Crash Stats, National Highway Traffic Safety Administration U.S. Department of Transportation. https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813115. (date of access 07.10.2024).
- 9. Safety Wissen, European Car Assessment Programme (EuroNCAP). https://www.safetywissen.com/#/requirement/. (date of access 07.10.2024).
- 10. Multifaceted personality: predictive active suspension in the A8 flagship model. https://www.audimediacenter.com/en/press-releases/multifacetedpersonality-predictive-active-suspension-in-the-a8-flagship-model-11905 (date of access 08.10.2024).
- 11. Active suspension. https://static.nhtsa.gov/odi/tsbs/2020/MC-10172997- 0001.pdf. (date of access 14.10.2024).
- 12. Footage Audi A8 driver assistance systems. https://www.audimediacenter.com/en/search?filter=&order=relevance &query=Pre+sense+side+system+&type=video. (date of access 20.10.2024).
- 13. Meet the S-Class DIGITAL: Innovation by Intelligence. https://www.youtube.com/watch?v=rxMnpK2GoGg. (date of access 20.10.2024).
- 14. Vehicle dynamics international 2019. http://www.rapa.com/automotive/wpcontent/uploads/sites/2/2024/01/eABCVehicleDynamics.pdf. (date of access 26.10.2024).
- 15. Konieczny K. The statistical analysis of damping parameters of hydraulic shock absorbers. Diagnostyka. 2014;15(1):49-52.
- 16. Tracker online with sample collection. https://physlets.org/tracker. (date of access 26.10.2024).
- 17. Savchenko Y, Mykhalevych M, Droździel P, Verbitskiy V, Wrona R. Accuracy and durability increasing of the body level control systems in the immobile state of the vehicle. Diagnostyka. 2022;23(3):2022310:1-8. https://doi.org/10.29354/diag/154793.
- 18. Eskandary K, Khajepour PA, Wong A, Momtaj A. Analysis and optimization of air suspension system with independent height and stiffness tuning. International Journal of Automotive Technology. 2016;17:807-816. https://doi.org/10.1007/s12239-016-0079-9.
- 19. Vaičiūnas G, Steišūnas S, Bureika G. Specification of estimation of a passenger car ride smoothness under various exploitation conditions. Eksploatacja i Niezawodnosc - Maintenance and Reliability. 2021; 23(4):719-725. http://doi.org/10.17531/ein.2021.4.14.
- 20. Bazhanova A, Nemchuk O, Lymarenko O, Piterska V, Sherstiuk O, Khamrai V. Diagnostics of stress and strained state of leaf springs of special purpose offroad vehicles. Diagnostyka. 2022;23(1):2022111. https://doi.org/10.29354/diag/147292.
- 21. Abburu SK. Modelling advanced air suspension with electronic level control in ADAMS/Car. University essay from KTH Royal Institute of Technology. 2020.
- 22. Chizari M. Quarter and full car models optimisation of passive and active suspension system using genetic algorithm. Systems and Control. 2021; 10.48550/arXiv.2101.12629. https://doi.org/10.48550/arXiv.2101.12629.
- 23. Rychlik A. Wheel rim state assessment using modal and geometrical parameters. MATEC Web Conf. 2018;182:01029. https://doi.org/10.1051/matecconf/201818201029.
- 24. Borecki M, Prus P, Korwin-Pawlowski M, Rychlik A, Kozubel W. Sensor set-up for wireless measurement of automotive rim and wheel parameters in laboratory conditions. Proc. SPIE. 2017;10445:1044569. https://doi.org/10.1117/12.2280970.
- 25. Shirahatti A, Prasad PSS, Panzade P, Kulkarni MM. Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2008;30:66-76. https://doi.org/10.1590/S1678- 58782008000100010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42445abd-18f1-40c4-9dc4-d42e01267cfe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.