Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a multi-pad bump-type foil thrust bearing with a taper-land height profile is investigated. A detailed thermo-elastohydrodynamic (TEHD) finite element (FE) model is used comprising all bearing pads instead of only a single pad. Although the single-pad reduction approach is commonly applied, it can not accurately account for the different temperatures, loads, and power losses for individual pads in the case of misalignment. The model accounts for the deformations of the foils on each pad via a Reissner-Mindlin-type shell model. Deformations of the rotor are calculated via the Navier-Lamé equations with thermoelastic stresses and centrifugal effects. The temperature of the top foil and the rotor are calculated with the use of heat diffusion equations. The temperature of each lubricating air film is obtained through a 3D energy equation. Film pressures are calculated with the 2D compressible Reynolds equation. Moreover, the surrounding of the bearing and runner disk is part of the thermodynamic model. Results indicate that the thermal bending of the runner disk as well as top foil sagging are key factors in performance reduction. Due to the bump-type understructure, the top foil sagging effect is observed in simulation results. The study at hand showcases the influence of misalignment between the rotor and the bearing on the bearing performance.
Rocznik
Tom
Strony
art. no. e147917
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- Institute of Applied Dynamics, Technical University of Darmstadt, Germany
autor
- Institute of Applied Dynamics, Technical University of Darmstadt, Germany
autor
- Institute of Applied Dynamics, Technical University of Darmstadt, Germany
Bibliografia
- [1] G.L. Agrawal, “Foil air/gas bearing technology – an overview,” in Volume 1: Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery, ser. Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 1997, p. V001T04A006, doi: 10.1115/97-GT-347.
- [2] P. Samanta, N. Murmu, and M. Khonsari, “The evolution of foil bearing technology,” Tribol. Int., vol. 135, pp. 305–323, 2019.
- [3] K.C. Radil and C. DellaCorte, “The effect of journal roughness and foil coatings on the performance of heavily loaded foil air bearings,” Tribol. Trans., vol. 45, no. 2, pp. 199–204, 2002.
- [4] F. Balducchi, M. Arghir, R. Gauthier, and E. Renard, “Experimental Analysis of the Start-Up Torque of a Mildly Loaded Foil Thrust Bearing1,” J. Tribol., vol. 135, no. 3, 2013, doi: 10.1115/1.4024211.
- [5] B.D. Dykas, “Factors influencing the performance of foil gas thrust bearings for oil-free turbomachinery applications,” Ph.D. dissertation, Case Western Reserve University, 2006.
- [6] F. Balducchi, M. Arghir, and R. Gauthier, “Experimental analysis of the dynamic characteristics of a foil thrust bearing,” J. Tribol., vol. 137, no. 2, p. 021703, 2015.
- [7] N. LaTray and D. Kim, “Design of Novel Gas Foil Thrust Bearings and Test Validation in a High-Speed Test Rig,” J. Tribol., vol. 142, no. 7, p. 071803, 2020, doi: 10.1115/1.4046412.
- [8] I. Iordanoff, “Analysis of an aerodynamic compliant foil thrust bearing: Method for a rapid design,” J. Tribol., vol. 121, no. 4, pp. 816–822, 1999.
- [9] C.A. Heshmat, D.S. Xu, and H. Heshmat, “Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods,” J. Tribol., vol. 122, no. 1, pp. 199–204, 2000.
- [10] R.J. Bruckner, Simulation and modeling of the hydrodynamic, thermal, and structural behavior of foil thrust bearings. Case Western Reserve University, 2004.
- [11] D. Lee and D. Kim, “Thermohydrodynamic Analyses of Bump Air Foil Bearings With Detailed Thermal Model of Foil Structures and Rotor,” J. Tribol., vol. 132, no. 2, p. 021704, 2010, doi: 10.1115/1.4001014.
- [12] L. San Andrés and T. H. Kim, “Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data,” J. Eng. Gas Turbines Power, vol. 132, no. 4, p. 042504, 2010, doi: 10.1115/1.3159386.
- [13] K. Sim and T. H. Kim, “Thermohydrodynamic analysis of bump-type gas foil bearings using bump thermal contact and inlet flow mixing models,” Tribol. Int., vol. 48, pp. 137–148, 2012, doi: 10.1016/j.triboint.2011.11.017.
- [14] T. Conboy, “Real-gas effects in foil thrust bearings operating in the turbulent regime,” J. Tribol., vol. 135, no. 3, p. 031703, 2013.
- [15] K. Feng, L.-J. Liu, Z.-Y. Guo, and X.-Y. Zhao, “Parametric study on static and dynamic characteristics of bump-type gas foil thrust bearing for oil-free turbomachinery,” Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol., vol. 230, no. 8, pp. 944–961, 2016.
- [16] J.R. Dickman, “An investigation of gas foil thrust bearing performance and its influencing factors,” Ph.D. dissertation, Case Western Reserve University, 2010.
- [17] A. Lehn, “Air Foil Thrust Bearings: A Thermo-Elasto-Hydrodynamic Analysis,” Ph.D. thesis, Technische Universität Darmstadt, 2017.
- [18] M. Rieken, M. Mahner, and B. Schweizer, “Thermal Optimization of Air Foil Thrust Bearings Using Different Foil Materials,” J. Turbomach., vol. 142, no. 10, p. 101003, 2020, doi: 10.1115/1.4047633.
- [19] D. Dowson, “A generalized Reynolds equation for fluid-film lubrication,” Int. J. Mech. Sci., vol. 4, no. 2, pp. 159–170, 1962, doi: 10.1016/S0020-7403(62)80038-1.
- [20] D. Lee and D. Kim, “Three-Dimensional Thermohydrodynamic Analyses of Rayleigh Step Air Foil Thrust Bearing with Radially Arranged Bump Foils,” Tribol. Trans., vol. 54, no. 3, pp. 432–448, 2011, doi: 10.1080/10402004.2011.556314.
- [21] Y. Bas¸ar and W.B. Krätzig, Mechanik der Flächentragwerke: Theorie, Berechnungsmethoden, Anwendungsbeispiele, 1st ed., ser. Grundlagen der Ingenieurwissenschaften. Wiesbaden: Vieweg + Teubner Verlag, 1985, doi: 10.1007/978-3-322-93983-8.
- [22] P. Wriggers, Computational contact mechanics, 2nd ed. Berlin: Springer, 2006, doi: 10.1007/978-3-540-32609-0.
- [23] M.H. Sadd, Elasticity: Theory, Applications, and Numerics. Elsevier, 2005.
- [24] M. Mahner, A. Lehn, and B. Schweizer, “Thermogas- and thermohydrodynamic simulation of thrust and slider bearings: Convergence and efficiency of different reduction approaches,” Tribol. Int., vol. 93, pp. 539–554, 2016, doi: 10.1016/j.triboint.2015.02.030.
- [25] A. Lehn, M. Mahner, and B. Schweizer, “Characterization of static air foil thrust bearing performance: an elasto-gasdynamic analysis for aligned, distorted and misaligned operating conditions,” Arch. Appl. Mech., vol. 88, no. 5, pp. 705–728, 2018, doi: 10.1007/s00419-017-1337-7.
- [26] C.L. Ong and J.M. Owen, “Computation of the flow and heat transfer due to a rotating disc,” Int. J. Heat Fluid Flow, vol. 12, no. 2, pp. 106–115, 1991, doi: 10.1016/0142-727X(91)90036-U.
- [27] T. Cebeci and A. Smith, Analysis of Turbulent Boundary Layers. New York: Academic Press, 1974.
- [28] A. Lehn, M. Mahner, and B. Schweizer, “A Contribution to the Thermal Modeling of Bump Type Air Foil Bearings: Analysis of the Thermal Resistance of Bump Foils,” J. Tribol., vol. 139, no. 6, p. 061702, 2017, doi: 10.1115/1.4036631.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42414829-9b86-4ceb-8a8b-3988cd7887cc