Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The contribution main from this research is modularity and better processing time in detecting community by using K-1 coloring. Testing performed on transaction datasets remittance on P2P platforms where the Louvain Coloring algorithm is better in comparison to Louvain Algorithm Data used is data transfer transactions made by customers on the P2P Online platform. The data is the User data that has information transfer transactions, Card data that has information card, IP data that has IP information, and Device data that has information device. Every user owns unique 128-bit identification, and other nodes representing card, device, and IP are assigned a random UUID. The Device node has the guide, and device properties. IP nodes only have property guide and node User has property fraud Money Transfer, guide, money Transfer Error Cancel Amount, first Charge back Date. Each node has a unique 128-bit guide, with the amount whole of as many as 789,856 nodes. Application technique K-1 staining on Louvain algorithm shows enhancement value modularity and better processing time for detecting community on the network large scale. Through a series of exercises and tests carried out in various scenarios, it shows that the experiments carried out in this paper, namely the Louvain Coloring algorithm, are more effective and efficient than the Louvain algorithm in scenario 1,3, and 5 meanwhile For Scenarios 2 and 4 Louvain Algorithm is better.
Słowa kluczowe
Rocznik
Tom
Strony
593--598
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Department Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia
autor
- Department Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
autor
- Department Data Science and Artificial Intelligence, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia
autor
- Department Computer Science, Faculty of Computer Science and Information Technology, Universitas Sumatera Utara, Medan, Indonesia
Bibliografia
- [1] Abdallah, A., Maarof, M. A., and Zainal, A. Fraud detection system: A survey. Journal of Network and Computer Applications, 2016. 68, 90-113.
- [2] Albrecht, J., Belger, A., Blum, R., & Zimmermann, R. (n.d.). Business Analytics on Knowledge Graphs for Market Trend Analysis. [3] Bhattacharyya, S., Jha, S., Tharakunnel, K., & Westland, J. C. Data mining for credit card fraud: A comparative study. 2011. Decision Support Systems, 50(3), 602-613.
- [4] Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10008.
- [5] Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data-SIGMOD ’08, 1247.
- [6] Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (n.d.). LOF: Identifying Density-Based Local Outliers.
- [7] Carcillo, F., Le Borgne, Y.-A., Caelen, O., & Bontempi, G. Streaming active learning strategies for real-life credit card fraud detection: Assessment and visualization. 2018. International Journal of Data Science and Analytics, 5(4), 285-300.
- [8] Carneiro, N., Figueira, G., & Costa, M. A data mining based system for credit-card fraud detection in e-tail. 2017. Decision Support Systems, 95, 91-101. https://doi.org/10.1016/j.dss.2017.01.002
- [9] Catalyurek, U., Feo, J., Gebremedhin, A., Halappanavar, M., & Pothen, A. Graph Coloring Algorithms for Muti-core and Massively Multithreaded Architectures. 2012. (arXiv:1205.3809).
- [10] Chicco, D., & Jurman, G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. 2020. BMC Genomics, 21(1), 6. https://doi.org/10.1186/s12864-019-6413-7
- [11] Crotti Junior, A., Orlandi, F., Graux, D., Hossari, M., O’Sullivan, D., Hartz, C., & Dirschl, C. Knowledge Graph-Based Legal Search over German Court Cases. 2020.
- [12] Ernst, P., Siu, A., & Weikum, G. KnowLife: A versatile approach for constructing a large knowledge graph for biomedical sciences. 2015. BMC Bioinformatics, 16(1), 157.
- [13] Jemima Jebaseeli, T., Venkatesan, R., & Ramalakshmi, K. Fraud Detection for Credit Card Transactions Using Random Forest Algorithm. 2021. (Vol. 1167, pp. 189-197).
- [14] Kalaycı, E. G., Grangel González, I., Lösch, F., Xiao, G., ul-Mehdi, A., Kharlamov, E., & Calvanese, D. 2020. (Eds.), The Semantic Web - ISWC 2020 (Vol. 12507, pp. 464-481).
- [15] Lucas, Y., Portier, P.-E., Laporte, L., Calabretto, S., Caelen, O., He-Guelton, L., & Granitzer, M. Multiple perspectives HMM-based feature engineering for credit card fraud detection. 2019.
- [16] Madhubabu, B. N. V., Vyshnavi, T., & Ashok, K. Credit Card Fraud Detection Algorithm using Decision Trees- based Random Forest Classifier. 2021.
- [17] Maes, S., Tuyls, K., Vanschoenwinkel, B., & Manderick, B. Credit Card Fraud Detection. Applying Bayesian and Neural networks. 2023.
- [18] Murorunkwere, B. F., Tuyishimire, O., Haughton, D., & Nzabanita, J. Fraud Detection Using Neural Networks: A Case Study of Income Tax. Future Internet. 2022. 14(6), 168.
- [19] Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. 2011. Decision Support Systems, 50(3), 559-569.
- [20] Rb, A., & Kr, S. K. Credit card fraud detection using artificial neural network. 2021. Global Transitions Proceedings, 2(1), 35-41.
- [21] Sopiyan, M., Fauziah, F., & Wijaya, Y. F. Fraud Detection Using Random Forest Classifier, Logistic Regression, and Gradient Boosting Classifier Algorithms on Credit Cards. 2022. JUITA: Journal Informatika, 10(1), 77.
- [22] Traag, V. A., Aldecoa, R., & Delvenne, J.-C. Detecting communities using asymptotical Surprise. 2015. Physical Review E, 92(2), 022816.
- [23] Traag, V. A., Waltman, L., & van Eck, N. J. From Louvain to Leiden: Guaranteeing well-connected communities. 2019. Scientific Reports, 9(1), 5233.
- [24] Yang, Y., Chen, R., Bai, X., & Chen, D. Finance Fraud Detection with Neural Network. 2020. E3S Web of Conferences, 214, 03005.
- [25] Zhang, D., Bhandari, B., & Black, D. Credit Card Fraud Detection Using Weighted Support Vector Machine. 2020. Applied Mathematics, 11(12), 1275-1291.
- [26] Zhao, X., Zhang, J., & Qin, X. LOMA: A local outlier mining algorithm based on attribute relevance analysis. 2017. Expert Systems with Applications, 84, 272-280.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42403a74-2cc0-433e-a2e8-44086481606a