ON A SINGULAR NONLINEAR NEUMANN PROBLEM

Jan Chabrowski

Communicated by P.A. Cojuhari

Abstract

We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: (i) $2<p+1<2^{*}(s)$, (ii) $p+1=2^{*}(s)$ and (iii) $2^{*}(s)<p+1 \leq 2^{*}$, where $2^{*}(s)=\frac{2(N-s)}{N-2}, 0<s<2$, and $2^{*}=\frac{2 N}{N-2}$ denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively.

Keywords: Neumann problem, critical Sobolev exponent, Hardy-Sobolev exponent Neumann problem.

Mathematics Subject Classification: 35B33, 35J20, 35J65.

1. INTRODUCTION

Let $\Omega \subset \mathbb{R}^{N}, N \geq 3$, be a bounded domain with a smooth boundary $\partial \Omega$. Throughout this paper we assume that $0 \in \partial \Omega$. In this paper we investigate the solvability of the following nonlinear Neumann problem

$$
\left\{\begin{align*}
-\Delta u+\lambda u^{p} & =\frac{u^{2^{*}(s)-1}}{|x|^{s}} & & \text { in } \Omega \tag{1.1}\\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega, \quad u>0 \text { on } \Omega
\end{align*}\right.
$$

where $2^{*}(s)=\frac{2(N-s)}{N-2}, N \geq 3,0<s<2$, is the critical Hardy-Sobolev exponent and $\lambda>0$ is a parameter. It is assumed that $0 \in \partial \Omega$ and $2<p+1 \leq 2^{*}$, where 2^{*} is a critical Sobolev exponent given by $2^{*}=\frac{2 N}{N-2}, N \geq 3$. Obviously $2^{*}(0)=2^{*}$.

Solutions to problem (1.1) are sought in the Sobolev space $H^{1}(\Omega)$ equipped with norm

$$
\|u\|^{2}=\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

A nonnegative function $u \in H^{1}(\Omega)$ is said to be a weak solution of problem (1.1) if

$$
\begin{equation*}
\int_{\Omega}\left(\nabla u \nabla v+\lambda u^{p} v\right) d x=\int_{\Omega} \frac{u^{2^{*}(s)-1}}{|x|^{s}} v d x \tag{1.2}
\end{equation*}
$$

for every $v \in H^{1}(\Omega)$. Problem (1.1) is characterized by lack of compactness because embeddings of the space $H^{1}(\Omega)$ into spaces $L^{2^{*}}(\Omega)$ and $L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$ are continuous but not compact. The literature on problems involving the critical Sobolev exponent and the Hardy-Sobolev potential is very extensive. The pioneering paper by Brezis and Nirenberg [6] has greatly inspired research on nonlinear elliptic problems involving these critical exponents. For further developments we refer to survey articles $[4,19]$ and the monograph [24]. The results of the paper [6], which deals with the Dirichlet problem have been extended by many authors to the Neumann problem. We mention here some of them $[1,2,7-12,15,16,22]$ and [23]. This paper has been inspired by the recent article [17]. The authors of this paper considered a number nonlinear problems, with the Dirichlet boundary conditions, involving the critical Sobolev exponent and the Hardy-Sobolev potential. In particular, they considered the following problems:

$$
\left\{\begin{align*}
-\Delta u+\lambda u^{p} & =\frac{u^{2^{*}(s)-1}}{|x|^{s}} & & \text { in } \Omega, \tag{1.3}\\
u & =0 & & \text { on } \partial \Omega, \quad u>0 \text { on } \Omega
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
\Delta u-\lambda u^{\frac{N+2}{N-2}} & =\frac{u^{2^{*}(s)-1}}{|x|^{s}} & & \text { in } \Omega, \tag{1.4}\\
u & =0 & & \text { o } \partial \Omega, \quad u>0 \text { on } \Omega
\end{align*}\right.
$$

The following two theorems have been established in [17]:
Theorem 1.1. Let $\lambda>0,0 \in \partial \Omega, 1 \leq p<\frac{N}{N-2}, p+1<2^{*}(s)$ with $0<s<2$. If the mean curvature of $\partial \Omega$ at 0 is negative, then problem (1.3) has a solution.

Theorem 1.2. Let $\lambda>0,0 \in \partial \Omega$. Suppose that the mean curvature of $\partial \Omega$ at 0 is negative. Then problem (1.4) has a solution provided that one of the following conditions holds:
(i) $N=3$ and $0<s<1$,
(ii) $N \geq 4$ and $0<s<2$.

We now observe that equation (1.4) with the Neumann boundary conditions has no positive solution. Indeed, assuming that u is a solution, it follows from the definition of a weak solution of (1.4) that

$$
\lambda \int_{\Omega} u^{\frac{N+2}{N-2}} d x+\int_{\Omega} \frac{u^{2^{*}(s)-1}}{|x|^{s}} d x=0
$$

which is impossible.

In this paper we focus our attention on problem (1.1) which is an extension of (1.3) to the Neumann boundary conditions. Unlike in paper [17] we consider a full range of exponents $p, 2^{*}(s)$ and distinguish three cases: (i) $2<p+1<2^{*}(s)$, (ii) $p+1=2^{*}(s)$, (iii) $2^{*}(s)<p+1 \leq 2^{*}$. In particular, a solution in the case (iii) has been obtained by a local minimization. However, this method cannot be used for the same equation with the Dirichlet boundary conditions.

The paper is organized as follows. Section 2 contains some information about minimizers for the best Sobolev and Hardy-Sobolev constants that is used in the next sections. The existence results for problem (1.1) in these three cases are given in Sections 3, 4 and 5. In the final Section 6 we discuss the solvability for problem (1.1) with terms u^{p} and $\frac{u^{2 *(s)-1}}{|x|^{s}}$ interchanged.

Throughout this paper we denote a strong convergence by $" \rightarrow$ " and a weak convergence by " \rightharpoonup ".

Let $\phi: X \rightarrow \mathbb{R}$ be a C^{1} functional on a Banach space X. We recall that a sequence $\left\{x_{n}\right\} \subset X$ is a Palais-Smale sequence for ϕ at a level $c \in \mathbb{R}\left(\mathrm{a}(P S)_{c}\right.$ sequence for short) if $\phi\left(x_{n}\right) \rightarrow c$ and $\phi^{\prime}\left(x_{n}\right) \rightarrow 0$ in X^{*} as $n \rightarrow \infty$. Finally, we say that the functional ϕ satisfies the Palais-Smale condition at level $c\left((P S)_{c}\right.$ condition for short) if each $(P S)_{c}$ sequence is relatively compact in X.

2. PRELIMINARIES

Solutions to problem (1.1) will be sought as critical points of the variational functional

$$
J_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{p+1} \int_{\Omega}|u|^{p+1} d x-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x
$$

It is clear that J_{λ} is of class C^{1} on $H^{1}(\Omega)$.
Problems investigated in this paper are closely related to optimal constants of the Hardy-Sobolev type. The best Sobolev constant is defined by

$$
S=\inf \left\{\int_{\mathbb{R}^{N}}|\nabla u|^{2} d x: u \in D^{1,2}\left(\mathbb{R}^{N}\right), \int_{\mathbb{R}^{N}}|u|^{2^{*}} d x=1\right\}
$$

where $D^{1,2}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2^{*}}\left(\mathbb{R}^{N}\right): \nabla u \in L^{2}\left(\mathbb{R}^{N}\right)\right\} . S$ is attained by a family of functions (see [21])

$$
U_{\epsilon, y}(x)=\epsilon^{-\frac{N-2}{2}} U\left(\frac{x-y}{\epsilon}\right), \quad \epsilon>0, y \in \mathbb{R}^{N}
$$

called instantons, where

$$
U(x)=\left(\frac{N(N-2)}{N(N-2)+|x|^{2}}\right)^{\frac{N-2}{2}}
$$

We also have

$$
\int_{\Omega}|\nabla U|^{2} d x=\int_{\mathbb{R}^{N}} U^{2^{*}} d x=S^{\frac{N}{2}}
$$

and moreover U satisfies the equation

$$
-\Delta u=u^{2^{*}-1} \text { in } \mathbb{R}^{N} .
$$

The best Sobolev constant can be defined on every domain Ω. It is well-known that S is independent of Ω and is only attained when $\Omega=\mathbb{R}^{N}$.

The best Hardy-Sobolev constant for the domain $\Omega \subset \mathbb{R}^{N}$ is defined by

$$
M_{s}(\Omega)=\inf \left\{\int_{\Omega}|\nabla u|^{2} d x: \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x=1, u \in H_{0}^{1}(\Omega)\right\} .
$$

If $\Omega=\mathbb{R}^{N}$, we write M_{s} instead of $M_{s}(\Omega)$. If $s=0$, then $M_{0}=S$. In the case $0<s<2, M_{s}(\Omega)$ depends on Ω (see [16]). If $s=2$, we obtain the Hardy constant and M_{2} is independent of Ω and is given by $M_{2}=\left(\frac{N-2}{2}\right)^{2}$. The constant M_{2} is not attained.

If $0<s<2$, then M_{s} is attained by a family of functions

$$
W_{\epsilon}(x)=\frac{C_{N} \epsilon^{\frac{N-2}{2(2-s)}}}{\left(\epsilon+|x|^{2-s}\right)^{\frac{N-2}{2-s}}},
$$

where $C_{N}>0$ is normalizing constant depending on N and s. Moreover, W_{ϵ} satisfies the equation

$$
-\Delta u=\frac{u^{2^{*}(s)-1}}{|x|^{s}} \text { in } \mathbb{R}^{N}-\{0\} .
$$

We also have

$$
\int_{\mathbb{R}^{N}}\left|\nabla W_{\epsilon}\right|^{2} d x=\int_{\mathbb{R}^{N}} \frac{W_{\epsilon}^{2^{*}(s)}}{|x|^{s}} d x=M_{s}^{\frac{N-s}{2-s}} .
$$

3. CASE $p+1<2^{*}(s)$

First we show that the functional J_{λ} has a mountain-pass structure. The following result is well-known (see [16]).

Lemma 3.1. Let $0 \in \partial \Omega$. Then there exists a constant $S_{H}>0$ such that

$$
\left(\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{2}{22^{*}(s)}} \leq S_{H} \int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x
$$

for every $u \in H^{1}(\Omega)$.

Proposition 3.2. Let $2<p+1<2^{*}(s)$ and $\lambda>0$. Then there exist constants $\kappa>0$ and $\rho>0$ such that

$$
\begin{equation*}
J_{\lambda}(u) \geq \kappa \text { for }\|u\|=\rho . \tag{3.1}
\end{equation*}
$$

Proof. It follows from the Hölder inequality that

$$
\int_{\Omega} u^{2} d x \leq\left(\int_{\Omega}|u|^{p+1} d x\right)^{\frac{2}{p+1}}|\Omega|^{1-\frac{2}{p+1}} .
$$

Hence

$$
\int_{\Omega}|u|^{p+1} d x \geq\left(\int_{\Omega} u^{2} d x\right)^{\frac{p+1}{2}}|\Omega|^{1-\frac{p+1}{2}} .
$$

Thus

$$
J_{\lambda}(u) \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{p+1}|\Omega|^{1-\frac{p+1}{2}}\left(\int_{\Omega} u^{2} d x\right)^{\frac{p+1}{2}}-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x
$$

If $\|u\|=\rho<1$, then $\int_{\Omega}|\nabla u|^{2} d x<1$ and

$$
\int_{\Omega}|\nabla u|^{2} d x \geq\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{p+1}{2}}
$$

as $p+1>2$. From this we obtain the following estimate of J_{λ} for $\|u\|=\rho$:

$$
J_{\lambda}(u) \geq \frac{1}{2}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{p+1}{2}}+\frac{\lambda}{p+1}|\Omega|^{1-\frac{p+1}{2}}\left(\int_{\Omega} u^{2} d x\right)^{\frac{p+1}{2}}-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x .
$$

Let $c_{1}=\min \left(\frac{1}{2}, \frac{\lambda}{p+1}|\Omega|^{1-\frac{p+1}{2}}\right)$. Then using Lemma 3.1 we get

$$
\begin{aligned}
J_{\lambda}(u) & \geq c_{1}\left[\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{p+1}{2}}+\left(\int_{\Omega} u^{2} d x\right)^{\frac{p+1}{2}}\right]-\frac{1}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x \geq \\
& \geq c_{1} 2^{\frac{1-p}{2}}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{\frac{p+1}{2}}-\frac{S_{H}^{\frac{2^{*}(s)}{2}}}{2^{*}(s)}\|u\|^{2^{*}(s)} .
\end{aligned}
$$

Taking $\rho>0$ sufficiently small the estimate (3.1) follows.
We now observe that if $u=t \phi$ with $\phi \in H^{1}(\Omega)$ and $\phi \neq 0$ then $J_{\lambda}(t \phi)<0$ for $t>0$ sufficiently large. Thus the functional J_{λ} has a mountain-pass structure (see [3]).

Proposition 3.3. Let $\lambda>0$ and $2<p+1<2^{*}(s)$. Then J_{λ} satisfies the $(P S)_{c}$ condition for

$$
\begin{equation*}
c<\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) M_{s}^{\frac{N-s}{2-s}} . \tag{3.2}
\end{equation*}
$$

Proof. Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence with c satisfying (3.2). First we show that $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. We have

$$
\begin{aligned}
J_{\lambda}\left(u_{n}\right)-\frac{1}{p+1}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & \left(\frac{1}{2}-\frac{1}{p+1}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+ \\
& +\lambda\left(\frac{1}{p+1}-\frac{1}{2^{*}(s)}\right) \int_{\Omega} \frac{\left|u_{n}\right|^{2^{*}(s)}}{|x|^{s}} d x=c+o\left(\left\|u_{n}\right\|\right) .
\end{aligned}
$$

Since $\frac{1}{p+1}-\frac{1}{2^{*}(s)}>0$ we see that

$$
\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+\int_{\Omega} \frac{\left|u_{n}\right|^{2^{*}(s)}}{|x|^{s}} d x \leq C+o\left(\left\|u_{n}\right\|\right)
$$

for some constant $C>0$. This obviously shows that $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. Hence we may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega), L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$ and $u_{n} \rightarrow u$ in $L^{p+1}(\Omega)$. By the concentration-compactness principle (see [18]) there exist constants $\mu_{0}>0$ and $\nu_{0}>0$ such that

$$
\left|\nabla u_{n}\right|^{2} \rightharpoonup \mu \geq|\nabla u|^{2}+\mu_{0} \delta_{0}
$$

and

$$
\frac{\left|u_{n}\right|^{2^{*}(s)}}{|x|^{s}} \rightharpoonup \nu=\frac{|u|^{2^{*}(s)}}{|x|^{s}}+\nu_{0} \delta_{0}
$$

in the sense of measures, where δ_{0} denotes the Dirac measure assigned to 0 . The constants ν_{0} and μ_{0} satisfy the inequality

$$
\begin{equation*}
2^{-\frac{2-s}{N-s}} \nu_{0}^{\frac{2}{2 *(s)}} M_{s} \leq \mu_{0} \tag{3.3}
\end{equation*}
$$

To complete the proof it is sufficient to show that $\nu_{0}=0$. Arguing by contradiction assume that $\nu_{0}>0$. Testing $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$ by a family of functions $\phi_{\delta}, \delta>0$, concentrating at 0 we derive the inequality $\mu_{0} \leq \nu_{0}$. From this and (3.3) we get that $\nu_{0} \geq \frac{1}{2} M_{s}^{\frac{N-s}{2-s}}$. It then follows again from (3.3) that

$$
\begin{equation*}
\mu_{0} \geq \frac{1}{2} M_{s}^{\frac{N-s}{2-s}} . \tag{3.4}
\end{equation*}
$$

Thus

$$
\begin{aligned}
J_{\lambda}\left(u_{n}\right)-\frac{1}{2^{*}(s)}\left\langle J_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle= & \lambda\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+ \\
& +\lambda\left(\frac{1}{p+1}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left|u_{n}\right|^{p+1} d x
\end{aligned}
$$

Letting $n \rightarrow \infty$ we deduce from this that

$$
c \geq \frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) M_{s}^{\frac{N-s}{2-s}}
$$

which is impossible. Since $\nu_{0}=0, u_{n} \rightarrow u$ in $L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$. This and the fact that $J_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$ imply that $u_{n} \rightarrow u$ in $H^{1}(\Omega)$.

A solution to problem (1.1) always exists for λ belonging to a small interval $(0, \Lambda)$. Indeed, for $t \geq 0$ we have

$$
J_{\lambda}(t)=\frac{\lambda}{p+1}|\Omega| t^{p+1}-\frac{t^{2^{*}(s)}}{2^{*}(s)} \int_{\Omega} \frac{d x}{|x|^{s}}
$$

and

$$
\max _{t \geq 0} J_{\lambda}(t)=J_{\lambda}\left(t_{\max }\right)=\left(\frac{1}{p+1}-\frac{1}{2^{*}(s)}\right) \frac{(\lambda|\Omega|)^{\frac{2^{*}(s)}{2^{*}(s)-p-1}}}{\left(\int_{\Omega} \frac{d x}{|x|^{s}}\right)^{\frac{p+1}{2^{*}(s)-p-1}}}
$$

where

$$
t_{\max }=\left(\frac{\lambda|\Omega|}{\int_{\Omega} \frac{d x}{|x|^{s}}}\right)^{\frac{1}{2^{*}(s)-p-1}}
$$

If $\lambda>0$ satisfies the following inequality

$$
\left(\frac{1}{p+1}-\frac{1}{2^{*}(s)}\right) \frac{(\lambda|\Omega|)^{\frac{2^{*}(s)}{2^{*}(s)-p-1}}}{\left(\int_{\Omega} \frac{d x}{|x|^{s}}\right)^{\frac{p+1}{2^{*}(s)-p-1}}}<\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) M_{s}^{\frac{N-s}{2-s}}
$$

then problem (1.1) has a solution. It is clear that this inequality holds for λ belonging to some interval $(0, \Lambda)$.

To verify the validity of the condition (3.2) for each $\lambda>0$, we need the following asymptotic properties of W_{ϵ}. Let

$$
I(u)=\frac{\int_{\Omega}|\nabla u|^{2} d x}{\left(\int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{N-2}{2-s}}},
$$

then we have

$$
I\left(W_{\epsilon}\right)= \begin{cases}\frac{M_{s}}{2^{\frac{2-s}{N-s}}-H(0) a_{N} \epsilon^{\frac{1}{2-s}}+o\left(\epsilon^{\frac{1}{2-s}}\right)} & \text { for } N \geq 4 \tag{3.5}\\ \frac{M_{s}}{2^{\frac{2-s}{N-s}}}-H(0) b_{N} \epsilon^{\frac{1}{2-s}}|\log \epsilon|+o\left(\epsilon^{\frac{1}{2-s}}\right) & \text { for } N=3\end{cases}
$$

where $H(0)$ denotes the mean curvature of $\partial \Omega$ at 0 , and a_{N}, b_{N} are positive constants depending on N and s (see [16]).

Theorem 3.4. Let $\lambda>0$ and $H(0)>0$.
(i) If $N \geq 4,1<p<\frac{N}{N-2}$ and $0<s<1$, then problem (1.1) has a solution.
(ii) If $N=3$ and $2<p<3$ and $0<s<1$, then problem (1.1) has a solution.

Proof. We may assume that $\lambda=1$. It suffices to verify the condition (3.2). Then the existence of a solution follows from the mountain-pass theorem [3]. Since $p+1<2^{*}(s)$, there exists a constant $t_{\epsilon}>0$ such that

$$
\max _{t \geq 0} J_{\lambda}\left(t W_{\epsilon}\right)=\frac{t_{\epsilon}^{2}}{2} \int_{\Omega}\left|\nabla W_{\epsilon}\right|^{2} d x-\frac{t_{\epsilon}^{2^{*}(s)}}{2^{*}(s)} \int_{\Omega} \frac{W_{\epsilon}^{2^{*}(s)}}{|x|^{s}} d x+\frac{t_{\epsilon}^{p+1}}{p+1} \int_{\Omega} W_{\epsilon}^{p+1} d x
$$

It is easy to show that t_{ϵ} is bounded independently of $\epsilon>0$, that is, there exists a constant $T>0$ such that $t_{\epsilon} \leq T$ for every $\epsilon>0$ (small). From this we deduce that

$$
\begin{equation*}
\max _{t \geq 0} J_{\lambda}\left(t W_{\epsilon}\right) \leq\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right)\left[\frac{\int_{\Omega}\left|\nabla W_{\epsilon}\right|^{2} d x}{\left(\int_{\Omega} \frac{W_{\epsilon}^{2^{*}(s)}}{|x|^{s}} d x\right)^{\frac{N-2}{N-s}}}\right]^{\frac{N-s}{2-s}}+\frac{T^{p+1}}{p+1} \int_{\Omega} W_{\epsilon}^{p+1} d x \tag{3.6}
\end{equation*}
$$

We now observe that

$$
\begin{equation*}
\int_{\Omega} W_{\epsilon}^{p+1} d x=O\left(\epsilon^{\frac{2 N-(N-2)(p+1)}{2(2-s)}}\right) \tag{3.7}
\end{equation*}
$$

if $\frac{2}{N-2}<p$. Since $p<\frac{N}{N-2}$ we see that $\int_{\Omega} W_{\epsilon}^{p+1} d x=o\left(\epsilon^{\frac{1}{2-s}}\right)$. We point out here that conditions $p<\frac{N}{N-2}$ and $0<s<1$ yield $p+1<2^{*}(s)$. Finally, combining (3.5) with inequalities (3.6) and (3.7) we get condition (3.2) and assertions (i) and (ii) follow. According to Theorem 10 in [5] these mountain-pass solutions can be taken to be nonnegative and by the strong maximum principle these solutions are positive on Ω (see [14]).

4. CASE $p+1=2^{*}(s), 0<s<2$

In this case we also have $p+1<2^{*}=\frac{2 N}{N-2}$. If $p+1=2^{*}(s)$ with $0<s<2$, then $s=N-\frac{(N-2)(p+1)}{2}$. Obviously if $1<p<\frac{N+2}{N-2}$, then $0<s<2$. In this case we look for a solution of (1.1) as a minimizer of the constrained variational problem

$$
\begin{equation*}
I=\inf \left\{\int_{\Omega}|\nabla u|^{2} d x: u \in H^{1}(\Omega), \int_{\Omega}\left(\frac{1}{|x|^{s}}-\lambda\right)|u|^{p+1} d x=1\right\} \tag{4.1}
\end{equation*}
$$

A minimizer u after rescaling $I^{\frac{1}{p-1}} u$ is a solution of problem (1.1). It is assumed that a parameter $\lambda>0$ satisfies

$$
\begin{equation*}
\frac{1}{|\Omega|} \int_{\Omega} \frac{d x}{|x|^{s}}<\lambda \tag{4.2}
\end{equation*}
$$

To justify this assumption let us assume that u is a solution of problem (1.1). Testing (1.2) with $v=1$ we get

$$
\lambda \int_{\Omega}|u|^{p} d x=\int_{\Omega} \frac{|u|^{p}}{|x|^{s}} d x \geq d^{-s} \int_{\Omega}|u|^{p} d x
$$

where $d=\operatorname{diam} \Omega$. This inequality implies that λ satisfies

$$
\begin{equation*}
\lambda>d^{-s} . \tag{4.3}
\end{equation*}
$$

Obviously inequality (4.2) yields inequality (4.3).
To proceed further we need the following decomposition of the space $H^{1}(\Omega)$. Since 0 is the first eigenvalue of the operator " $-\Delta$ " with the Neumann boundary conditions, we have the following decomposition of $H^{1}(\Omega)$:

$$
H^{1}(\Omega)=V \oplus \mathbb{R} \quad \text { with } \quad V=\left\{v \in H^{1}(\Omega): \int_{\Omega} v d x=0\right\} .
$$

Using this decomposition we can define an equivalent norm on $H^{1} \Omega$) given by

$$
\|u\|_{V}^{2}=\|\nabla v\|_{2}^{2}+t^{2} \text { for } u=v+t \text { with } v \in V, t \in \mathbb{R} .
$$

Lemma 4.1. Let $p+1=2^{*}(s)$ for some $0<s<2$. Suppose that (4.2) holds. Then $I>0$.

Proof. Arguing by contradiction, assume that $I=0$. Let $u_{n}=v_{n}+t_{n}, v_{n} \in V, t_{n} \in \mathbb{R}$ be a minimizing sequence for $I=0$. Since $\left\|\nabla v_{n}\right\|_{2}^{2} \rightarrow 0$, we see that $v_{n} \rightarrow 0$ in $L^{2}(\Omega)$. We now show that the sequence $\left\{t_{n}\right\}$ is bounded. In the contrary case we may assume that $t_{n} \rightarrow \infty$ (the case $t_{n} \rightarrow-\infty$ can be treated in a similar way). We have

$$
\begin{equation*}
1+\lambda \int_{\Omega}\left|v_{n}+t_{n}\right|^{p+1} d x=\int_{\Omega}|x|^{-s}\left|v_{n}+t_{n}\right|^{p+1} d x \tag{4.4}
\end{equation*}
$$

that is,

$$
t_{n}^{-p-1}+\lambda \int_{\Omega}\left|\frac{v_{n}}{t_{n}}+1\right|^{p+1} d x=\int_{\Omega}|x|^{-s}\left|\frac{v_{n}}{t_{n}}+1\right|^{p+1} d x
$$

Since V is continuously embedded into $L^{p+1}(\Omega)$ and $L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$, letting $n \rightarrow \infty$ in the above equation, we obtain

$$
\lambda|\Omega|=\int_{\Omega}|x|^{-s} d x
$$

which is impossible. Thus $\left\{t_{n}\right\}$ is bounded and we may assume that $t_{n} \rightarrow t_{0}$. Using this, we derive a contradiction from (4.4). This contradiction completes the proof.

Proposition 4.2. Let $p+1=2^{*}(s)$ for some $0<s<2$ and suppose that (4.2) holds. If

$$
\begin{equation*}
I<\frac{M_{s}}{2^{\frac{2-s}{N-s}}} \tag{4.5}
\end{equation*}
$$

then problem (1.1) has a solution.
Proof. Let $\left\{u_{n}\right\}$ be a minimizing sequence for I such that $\int\left(|x|^{-s}-\lambda\right)\left|u_{n}\right|^{p+1} d x=1$ for each n. We have $u_{n}=v_{n}+t_{n}, v_{n} \in V, t_{n} \in \mathbb{R}$. Assuming that the sequence $\left\{t_{n}\right\}$ is unbounded, we obtain a contradiction, as in the proof of Lemma 4.1. Thus the sequence $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$ and we may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega), L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$ and $u_{n} \rightarrow u \mathrm{n} L^{p+1}(\Omega)$. It then follows from the concentration-compactness principle that there exist constants $\mu_{0} \geq 0$ and $\nu_{0} \geq 0$ such that

$$
\left|\nabla u_{n}\right|^{2} \rightharpoonup \mu \geq|\nabla u|^{2}+\mu_{0} \delta_{0}
$$

and

$$
\frac{\left|u_{n}\right|^{p+1}}{|x|^{s}}-\lambda\left|u_{n}\right|^{p+1} \rightharpoonup|u|^{p+1}\left(\frac{1}{|x|^{s}}-\lambda\right)+\nu_{0} \delta_{0}
$$

in the sense of measures. The constants μ_{0} and ν_{0} satisfy the following inequality

$$
\begin{equation*}
\frac{M_{s} \nu_{0}^{\frac{2}{p+1}}}{2^{\frac{2-s}{N-s}}} \leq \mu_{0} \tag{4.6}
\end{equation*}
$$

Moreover, there holds

$$
\begin{equation*}
1=\int_{\Omega}\left(\frac{1}{|x|^{s}}-\lambda\right)|u|^{p+1} d x+\nu_{0} \tag{4.7}
\end{equation*}
$$

First we show that

$$
\int_{\Omega}\left(\frac{1}{|x|^{s}}-\lambda\right)|u|^{p+1} d x>0
$$

In the contrary case we would have

$$
\int_{\Omega}\left(\frac{1}{|x|^{s}}-\lambda\right)|u|^{p+1} d x \leq 0 .
$$

By (4.7), we would have $\nu_{0} \geq 1$. It then follows from (4.6) that $\mu_{0} \geq \frac{M_{s}}{2^{\frac{2-s}{N-s}}}$. Consequently,

$$
I \geq \int_{\Omega}|\nabla u|^{2} d x+\mu_{0} \geq \frac{M_{s}}{2^{\frac{2-s}{N-s}}}
$$

which is impossible. From the definition of I we derive, using (4.5) and (4.6) that

$$
\begin{aligned}
I & \geq I\left(\int_{\Omega}\left(\frac{|u|^{p+1}}{|x|^{s}}-\lambda|u|^{p+1}\right) d x\right)^{\frac{2}{p+1}}+\frac{M_{s} \nu_{0}^{\frac{2}{p+1}}}{2^{\frac{2-s}{N-s}}}> \\
& >I\left(\int_{\Omega}\left(\frac{|u|^{p+1}}{|x|^{s}}-\lambda|u|^{p+1}\right) d x\right)^{\frac{2}{p+1}}+I \nu_{0}^{\frac{2}{p+1}}
\end{aligned}
$$

Thus

$$
1>\left(\int_{\Omega}\left(\frac{|u|^{p+1}}{|x|^{s}}-\lambda|u|^{p+1}\right) d x\right)^{\frac{2}{p+1}}+\nu_{0}^{\frac{2}{p+1}}
$$

This is obviously in contradiction with (4.7). Therefore $\mu_{0}=\nu_{0}=0$ and the minimizing sequence $\left\{u_{n}\right\}$ converges in $H^{1}(\Omega)$ to u. A minimizer u, up to a multiplicative constant, is a solution of problem (1.1). Indeed, let $\phi \in H^{1}(\Omega)$ and set

$$
f(t)=\frac{\int_{\Omega}|\nabla(u+t \phi)|^{2} d x}{\left(\int_{\Omega}\left(|x|^{-s}-\lambda\right)|u+t \phi|^{2^{*}(s)} d x\right)^{\frac{2}{2^{*}(s)}}}
$$

for t small. Since $f^{\prime}(0)=0$, we get

$$
\int_{\Omega} \nabla u \nabla \phi d x=I \int_{\Omega} \frac{|u|^{2^{*}(s)-2} u}{|x|^{s}} d x
$$

We now set $u=\frac{1}{I^{\frac{1}{p-1}}} v$ and it is easy to check that v is a solution of problem (1.1). Since $|u|$ is also a minimizer for I, we may assume that u is nonnegative and by the strong maximum principle $u(x)>0$ on Ω.

Theorem 4.3. Let $p+1=2^{*}(s)$ for some $1<s<2$ and $H(0)>0$. Suppose that (4.2) holds. Then (4.5) holds and problem (1.1) has a solution.

Proof. The assumption that $1<s<2$ implies that $p<\frac{N}{N-2}$. To verify (4.5) we need the following asymptotic properties of W_{ϵ} (see [16]). Let $K_{1}(\epsilon)=\int_{\Omega}\left|\nabla W_{\epsilon}\right|^{2} d x$ and $K_{2}(\epsilon)=\int_{\Omega} \frac{W_{\epsilon}^{2^{*}(s)}}{|x|^{s}} d x$. We then have (see [16])

$$
\begin{aligned}
& K_{1}(\epsilon)=\frac{1}{2} K_{1}-I(\epsilon)+o\left(\epsilon^{\frac{1}{2-s}}\right) \\
& K_{2}(\epsilon)=\frac{1}{2} K_{2}-\Pi(\epsilon)+o\left(\epsilon^{\frac{1}{2-s}}\right)
\end{aligned}
$$

where

$$
K_{1}=c_{N}^{2}(N-2)^{2} \int_{\mathbb{R}^{N}} \frac{|y|^{2-2 s} d y}{\left(1+|y|^{2-s}\right)^{\frac{2(N-s)}{2-s}}}
$$

$$
\begin{aligned}
K_{2} & =c_{N}^{2^{*}(s)} \int_{\mathbb{R}^{N}} \frac{d y}{|y|^{s}\left(1+|y|^{2-s}\right)^{\frac{2(N-s)}{2-s}}} \\
\lim _{\epsilon \rightarrow 0} \epsilon^{-\frac{1}{2-s}} I(\epsilon) & =H(0) A_{N} \text { and } \lim _{\epsilon \rightarrow 0} \epsilon^{-\frac{1}{2-s}} \Pi(\epsilon)=H(0) B_{N},
\end{aligned}
$$

where $A_{N}>0$ and $B_{N}>0$ are constants depending on N and s. We also have

$$
\lim _{\epsilon \rightarrow 0} \frac{I(\epsilon)}{\Pi(\epsilon)}>\frac{(N-2) K_{1}}{(N-s) K_{2}}
$$

Since $1<s<2$, it is easy to check that

$$
\int_{\Omega} W_{\epsilon}^{p+1} d x=O\left(\epsilon^{\frac{2 N-(N-2)(p+1)}{2(2-s)}}\right)=O\left(\epsilon^{\frac{s}{2-s}}\right)=o\left(\epsilon^{\frac{1}{2-s}}\right) .
$$

Using these asymptotic formulae we can write

$$
\begin{aligned}
\frac{\int_{\Omega}\left|\nabla W_{\epsilon}\right|^{2} d x}{\left(\int_{\Omega}\left(\frac{W_{\epsilon}^{2 *(s)}}{|x|^{s}}-\lambda W_{\epsilon}^{2^{*}(s)}\right) d x\right)^{\frac{2}{2^{*}(s)}}} & =\frac{\frac{1}{2} K_{1}-I(\epsilon)+o\left(\epsilon^{\frac{1}{2-s}}\right)}{\left(\frac{1}{2} K_{2}-\Pi(\epsilon)+o\left(\epsilon^{\frac{1}{2-s}}\right)\right)^{\frac{2}{2^{*}(s)}}}= \\
& =\frac{M_{s}}{2^{\frac{2-s}{N-s}}-H(0) a_{N} \epsilon^{\frac{1}{2-s}}+o\left(\epsilon^{\frac{1}{2-s}}\right)}
\end{aligned}
$$

for some constant a_{N} depending on N and s. This obviously yields (4.5).
5. CASE $2^{*}(s)<p+1 \leq 2^{*}, 0<s<2$

In this case we modify equation (1.1) by moving a parameter λ to the term $\frac{|u|^{2^{*}(s)-1}}{|x|^{s}}$, that is, we consider the following problem

$$
\left\{\begin{align*}
-\Delta u+u^{p} & =\lambda \frac{u^{2^{*}(s)-1}}{|x|^{s}} & & \text { in } \Omega, \tag{5.1}\\
\frac{\partial u}{\partial \nu} & =0 & & \text { on } \partial \Omega, \quad u>0 \text { on } \Omega .
\end{align*}\right.
$$

In fact, problem (1.1) can be reduced to (5.1) by introducing a new unknown function $u=\lambda^{-\frac{1}{p-1}} v$. Then v satisfies the equation

$$
-\Delta v+v^{p}=\lambda^{-\frac{2^{*}(s)-2}{p-1}} \frac{v^{2^{*}(s)-1}}{|x|^{s}} .
$$

The variational functional for problem (5.1) is given by

$$
I_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x-\frac{\lambda}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x .
$$

Theorem 5.1. Let $2^{*}(s)<p+1 \leq 2^{*}$. Then there exists $\lambda_{0}>0$ such that problem (5.1) has a solution for each $0<\lambda<\lambda_{0}$ (consequently problem (1.1) has a solution for $\left.\lambda>\lambda_{0}^{-\frac{p-1}{2^{*}(s)-2}}\right)$.
Proof. First we consider the case $2^{*}(s)<p+1=2^{*}$. As in the proof of Proposition 3.2 we obtain the following estimate

$$
I_{\lambda}(u) \geq c_{1} 2^{\frac{1-p}{2}} \rho^{p+1}-\lambda \frac{S_{H}^{\frac{2^{*}(s)}{2}}}{2^{*}(s)} \rho^{2^{*}(s)}
$$

for $\|u\|=\rho<1$, where $c_{1}=\min \left(\frac{1}{2}, \frac{|\Omega|^{1-\frac{p+1}{2}}}{p+1}\right)$. Let

$$
c_{2}=\frac{c_{1} 2^{\frac{1-p}{2}} 2^{*}(s)}{2 S_{H}^{\frac{2^{*}(s)}{2}}} \text { and } 0<\rho<\min \left(1,\left[\frac{M_{s}^{\frac{N-s}{2-s}}}{2 c_{2}^{\frac{N-2}{2-s}}}\right]^{\frac{2-s}{4}}\right)
$$

We choose λ_{0} satisfying

$$
\lambda_{0} \frac{S_{H}^{\frac{2^{*}(s)}{2}} \rho^{2^{*}(s)}}{2^{*}(s)}=\frac{1}{2} c_{1} 2^{\frac{1-p}{2}} \rho^{2^{*}}
$$

that is,

$$
\lambda_{0}=\frac{c_{1} 2^{\frac{1-p}{2}} 2^{*}(s)}{2 S_{H}^{\frac{2^{*}(s)}{2}}} \rho^{\frac{2 s}{N-2}}=c_{2} \rho^{\frac{2 s}{N-2}}
$$

Then

$$
I_{\lambda}(u) \geq \frac{1}{2} c_{1} 2^{\frac{1-p}{2}} \rho^{2^{*}(s)}
$$

for $\|u\|=\rho$ and $0<\lambda<\lambda_{0}$. We also have $d=\inf _{\|u\| \leq \rho} I_{\lambda}(u)<0$ for each $0<\lambda<\lambda_{0}$. By the Ekeland variational principle (see [13]) there exists a sequence $\left\{u_{n}\right\} \subset\{u:\|u\| \leq \rho\}$ such that $I_{\lambda}\left(u_{n}\right) \rightarrow d$ and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$. Applying the P.L. Lions' concentration-compactness principle (see [18]) there exist points $\left\{x_{j}\right\} \subset \bar{\Omega}$ and constants $\nu_{j}, \mu_{j}, j \in J \cup\{0\}$ such that

$$
\begin{gather*}
\left|\nabla u_{n}\right|^{2} d x \rightharpoonup d \mu \geq|\nabla u|^{2} d x+\sum_{j \in J} \mu_{j} \delta_{x_{j}}+\mu_{0} \delta_{0} \tag{5.2}\\
\left|u_{n}\right|^{2^{*}} d x \rightharpoonup d \nu=|u|^{2^{*}} d x+\sum_{j \in J} \nu_{j} \delta_{x_{j}}+\nu_{0} \delta_{0} \tag{5.3}\\
\frac{\left|u_{n}\right|^{2^{*}(s)}}{|x|^{s}} d x \rightharpoonup d \gamma=\frac{|u|^{2^{*}(s)}}{|x|^{s}}+\gamma_{0} \delta_{0} \tag{5.4}\\
S \nu_{j}^{\frac{2}{2^{*}}} \leq \mu_{j} \text { if } x_{j} \in \Omega, j \in J \tag{5.5}
\end{gather*}
$$

$$
\begin{equation*}
\frac{S}{2^{\frac{2}{N}}} \nu_{j}^{\frac{2}{2^{*}}} \leq \mu_{j} \text { if } x_{j} \in \partial \Omega, j \in J \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{M_{s}}{2^{\frac{2-s}{N-s}}} \gamma_{0}^{\frac{2}{2^{*}(s)}} \leq \mu_{0} . \tag{5.7}
\end{equation*}
$$

Testing $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$ with $u_{n} \varphi_{\delta}$, where $\varphi_{\delta}, \delta>0$, is a family of C^{1}-functions concentrating at x_{j} as $\delta \rightarrow 0$ we deduce that

$$
\mu_{j}+\nu_{j}=0 \text { for } j \in J
$$

This shows that the concentration can only occur at $0 \in \partial \Omega$. In a similar way we can show that $\mu_{0}+\nu_{0} \leq \lambda \gamma_{0}$. It suffices to show that $\gamma_{0}=0$. Arguing by contradiction assume that $\gamma_{0}>0$. Since $\mu_{0} \leq \lambda \gamma_{0}$, we derive from (5.7) that

$$
\begin{equation*}
\frac{1}{2}\left(\frac{M_{s}}{\lambda}\right)^{\frac{N-s}{2-s}} \leq \gamma_{0} \tag{5.8}
\end{equation*}
$$

This combined with (5.7) gives

$$
\begin{equation*}
\frac{M_{s}^{\frac{N-s}{2-s}}}{2 \lambda^{\frac{N-2}{2-s}}} \leq \mu_{0} \tag{5.9}
\end{equation*}
$$

Since $\left\|u_{n}\right\| \leq \rho$, we get from (5.9) and (5.2) that

$$
\begin{equation*}
\rho^{2} \geq \lim _{n \rightarrow \infty} \int_{\Omega}\left(\left|\nabla u_{n}\right|^{2}+u_{n}^{2}\right) d x \geq \frac{M_{s}^{\frac{N-s}{2-s}}}{2 \lambda^{\frac{N-2}{2-s}}} \geq \frac{M_{s}^{\frac{N-s}{2-s}}}{2 \lambda_{0}^{\frac{N-2}{2-s}}} . \tag{5.10}
\end{equation*}
$$

According to the choice of λ_{0} we derive from (5.10) that

$$
\rho^{2} \geq \frac{M_{s}^{\frac{N-s}{2-s}}}{2 c_{2}^{\frac{N-2}{2-s}} \rho^{\frac{2 s}{2-s}}} .
$$

Hence

$$
\rho \geq\left(\frac{M_{s}^{\frac{N-s}{2-s}}}{2 c_{2}^{\frac{N-2}{2-s}}}\right)^{\frac{2-s}{4}}
$$

and we have arrived at a contradiction with the choice of ρ. This completes the proof for the case $2^{*}(s)<p+1=2^{*}$. If $2^{*}(s)<p+1<2^{*}$, then the concentration of a minimizing sequence can only occur at $0 \in \partial \Omega$. In this case we choose λ_{0} in the following way

$$
\lambda_{0}=\frac{c_{1} 2^{\frac{1-p}{2}} 2^{*}(s)}{2 S_{H}^{\frac{2^{*}(s)}{2}}} \rho^{p+1-2^{*}(s)} .
$$

Arguing as in the first part of the proof we can show the existence of a solution of problem (5.1).

6. FINAL REMARKS

In this section we consider problem (1.1) with terms u^{p} and $\frac{u^{2^{*}(s)-1}}{|x|^{s}}$ interchanged, that is, we are concerned with the following problem

$$
\left\{\begin{align*}
-\Delta u+\lambda \frac{u^{2^{*}(s)-1}}{|x|^{s}} & =u^{p} \tag{6.1}\\
\frac{\text { in } \Omega}{\partial \nu} & =0 \\
\frac{\partial u}{} & \text { on } \partial \Omega, \quad u>0 \text { on } \Omega
\end{align*}\right.
$$

where $\lambda>0$ is a parameter and it is assumed that $0 \in \partial \Omega$. As in the case of problem (1.1) we distinguish three cases: (i) $2<p+1<2^{*}(s)$, (ii) $p+1=2^{*}(s)$ and (iii) $2^{*}(s)<p+1 \leq 2^{*}$. Solutions to problem (6.1) are sought as critical points of the variational functional

$$
\Phi_{\lambda}(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{2^{*}(s)} \int_{\Omega} \frac{|u|^{2^{*}(s)}}{|x|^{s}} d x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x .
$$

Case (i).
Theorem 6.1. Let $1<p+1<2^{*}(s)$ for some $0<s<2$. Then for each $\lambda>0$ problem (6.1) has a solution. Let u_{λ} be a solution corresponding to $\lambda>0$. Then $\left\|u_{\lambda}\right\| \rightarrow 0$ as $\lambda \rightarrow \infty$.
Proof. We commence by showing that functional Φ_{λ} is coercive for each $\lambda>0$. Let $d=\operatorname{diam} \Omega$. We then have

$$
\Phi_{\lambda}(u) \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{2^{*}(s) d^{s}} \int_{\Omega}|u|^{2^{*}(s)} d x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x .
$$

Using the Young inequality for each $\delta>0$ we have

$$
\int_{\Omega}|u|^{p+1} d x \leq \frac{\delta^{\frac{2^{*}(s)}{p+1}}(p+1)}{2^{*}(s)} \int_{\Omega}|u|^{2^{*}(s)} d x+\frac{2^{*}(s)-p-1}{2^{*}(s)} \delta^{-\frac{2^{*}(s)}{2^{*(s)-p-1}}}|\Omega| .
$$

We choose δ so that

$$
\frac{(p+1) \delta^{\frac{2^{*}(s)}{p+1}}}{2^{*}(s)}=\frac{\lambda}{22^{*}(s) d^{s}} .
$$

Thus

$$
\Phi_{\lambda}(t) \geq \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{22^{*}(s) d^{s}} \int_{\Omega}|u|^{2^{*}(s)} d x-\frac{2^{*}(s)-p-1}{2^{*}(s)(p+1)} \delta^{-\frac{2^{*}(s)}{2^{*(s)-p-1}}}|\Omega| .
$$

This inequality shows that Φ_{λ} is coercive. It is clear that Φ_{λ} is weakly lower semicontinuous in $H^{1}(\Omega)$. Moreover, for $t>0$ small enough

$$
\Phi_{\lambda}(t)=\frac{\lambda t^{2^{*}(s)}}{2^{*}(s)} \int_{\Omega} \frac{d x}{|x|^{s}}-\frac{t^{p+1}}{p+1}|\Omega|<0 .
$$

Hence $\infty<\inf _{u \in H^{1}(\Omega)}, \Phi_{\lambda}(u)<0$ and the existence of a minimizer follows from Theorem 1.2 in [20]. The second part of this theorem follows from the following inequality

$$
\begin{aligned}
\frac{\lambda}{d^{s}} \int_{\Omega}\left|u_{\lambda}\right|^{2^{*}(s)} d x & \leq \int_{\Omega}\left|\nabla u_{\lambda}\right|^{2} d x+\lambda \int_{\Omega} \frac{\left|u_{\lambda}\right|^{2^{*}(s)}}{|x|^{s}} d x= \\
& =\int_{\Omega}\left|u_{\lambda}\right|^{p+1} d x \leq \frac{p+1}{2^{*}(s)} \int_{\Omega}\left|u_{\lambda}\right|^{2^{*}(s)} d x+\frac{2^{*}(s)-p-1}{2^{*}(s)}|\Omega| .
\end{aligned}
$$

Case (ii).
In this case we were unable to find a solution for problem (6.1) through a constrained minimization. Following the argument used for problem (1.1) in this case, we observe that if u is a solution of problem (6.1) then

$$
\lambda \int_{\Omega} \frac{|u|^{2^{*}}}{|x|^{s}} d x=\int_{\Omega}|u|^{p+1} d x
$$

This yields $\lambda d^{-s}<1$. As in the case of problem (1.1) we introduce a stronger condition

$$
\begin{equation*}
\lambda \int_{\Omega} \frac{d x}{|x|^{s}}<|\Omega| \tag{6.2}
\end{equation*}
$$

which obviously implies that $\lambda d^{-s}<1$. Under assumption (6.2) the constrained minimization does not produce a solution for problem (6.1). Indeed, let

$$
m=\inf \left\{\int_{\Omega}|\nabla u|^{2} d x: u \in H^{1}(\Omega), \int_{\Omega}\left(1-\frac{\lambda}{|x|^{s}}\right)|u|^{p+1} d x=1\right\} .
$$

By (6.2) a constant function $\left(\int_{\Omega}\left(1-\frac{\lambda}{|x|^{2}}\right) d x\right)^{-\frac{1}{p+1}}$ belongs to the set of constraints and consequently $m=0$.
Case (iii)
First, we show that the functional Φ_{λ} has a mountain-pass structure. For $2<p+1 \leq 2^{*}$ we set

$$
S_{p}=\inf _{u \in H^{1}(\Omega)-\{0\}} \frac{\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x}{\left(\int_{\Omega}|u|^{p+1} d x\right)^{\frac{2}{p+1}}} .
$$

Proposition 6.2. Let $2^{*}(s)<p+1 \leq 2^{*}$. Then for every $\lambda>0$ there exist constants $0<\rho<1$ and $\kappa>0$ such that

$$
\Phi_{\lambda}(u) \geq \kappa \text { for }\|u\|=\rho .
$$

Proof. Since $\|u\|=\rho<1$, we have

$$
\begin{aligned}
\Phi_{\lambda}(u) \geq & \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{2^{*}(s) d^{s}} \int_{\Omega}|u|^{2^{*}(s)} d x-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x \geq \\
\geq & \frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x+\frac{\lambda}{2^{*}(s) d^{s}}|\Omega|^{1-\frac{2^{*}(s)}{2}}\left(\int_{\Omega} u^{2} d x\right)^{\frac{2^{*}(s)}{2}}-\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x \geq \\
\geq & \frac{1}{2}\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{2^{*}(s)}{2}}+\frac{\lambda}{2^{*}(s) d^{s}}|\Omega|^{1-\frac{2^{*}(s)}{2}}\left(\int_{\Omega} u^{2} d x\right)^{\frac{2^{*}(s)}{2}}- \\
& -\frac{1}{p+1} \int_{\Omega}|u|^{p+1} d x .
\end{aligned}
$$

Let $c_{1}=\min \left(\frac{1}{2}, \frac{\lambda}{2^{*}(s) d^{s}}|\Omega|^{1-\frac{2^{*}(s)}{2}}\right)$. Then

$$
\begin{aligned}
\Phi_{\lambda}(u) \geq & c_{1} 2^{\frac{2-2^{*}(s)}{2}}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{\frac{2^{*}(s)}{2}}- \\
& -\frac{1}{p+1} S_{p}^{-\frac{p+1}{2}}\left(\int_{\Omega}\left(|\nabla u|^{2}+u^{2}\right) d x\right)^{\frac{p+1}{2}}= \\
= & c_{1} 2^{\frac{2-2^{*}(s)}{2}} \rho^{2^{*}(s)}-\frac{1}{p+1} S_{p}^{-\frac{p+1}{2}} \rho^{p+1} .
\end{aligned}
$$

Taking $\rho \in(0,1)$ sufficiently small the result follows.
Proposition 6.3. The following holds:
(i) Let $2^{*}(s)<p+1=2^{*}$ for some $s \in(0,2)$. Then Φ_{λ} satisfies the $(P S)_{c}$ condition for

$$
c<\frac{1}{2}\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) S^{\frac{N}{2}} .
$$

(ii) If $2^{*}(s)<p+1<2^{*}$ for some $s \in(0,2)$, then the $(P S)_{c}$ condition holds for all $c \geq 0$.

Proof. (i) Let $\left\{u_{n}\right\} \subset H^{1}(\Omega)$ be a $(P S)_{c}$ sequence for Φ_{λ}, that is $\Phi_{\lambda}\left(u_{n}\right) \rightarrow c$ and $\Phi_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ in $H^{-1}(\Omega)$. First, we show that the sequence $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. We have

$$
\begin{aligned}
c+o(1)+o\left(\left\|u_{n}\right\|\right)= & \Phi_{\lambda}\left(u_{n}\right)-\frac{1}{2^{*}(s)}\left\langle\Phi_{\lambda}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+ \\
& +\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) \int_{\Omega}\left|u_{n}\right|^{p+1} d x .
\end{aligned}
$$

From this we deduce that

$$
\begin{equation*}
\int_{\Omega}|\nabla u|^{2} d x+\int_{\Omega}\left|u_{n}\right|^{p+1} d x \leq C\left(1+\left\|u_{n}\right\|\right) \tag{6.3}
\end{equation*}
$$

for some constant $C>0$. Since

$$
\int_{\Omega} u_{n}^{2} d x \leq|\Omega|^{1-\frac{2}{p+1}}\left(\int_{\Omega}\left|u_{n}\right|^{p+1} d x\right)^{\frac{2}{p+1}}
$$

we deduce that $\left\{u_{n}\right\}$ is bounded in $H^{1}(\Omega)$. Hence we may assume that $u_{n} \rightharpoonup u$ in $H^{1}(\Omega), L^{p+1}(\Omega)$ and $L^{2^{*}(s)}\left(\Omega,|x|^{-s}\right)$. By the P.L. Lions concentration-compactness principle there exist points $\left\{x_{j}\right\} \subset \bar{\Omega}$ and constants $\nu_{j}, \mu_{j}, j \in J, \gamma_{0}, \nu_{0}$ and μ_{0} such that (5.2)-(5.7) hold. Moreover, we have

$$
\begin{equation*}
\mu_{j} \leq \nu_{j}, \quad j \in J, \tag{6.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{0}+\lambda \gamma_{0} \leq \nu_{0} . \tag{6.5}
\end{equation*}
$$

It suffices to show that $\nu_{j}=\nu_{0}=0$ for $j \in J$. Assuming that $\nu_{j}>0$ for some $j \in J$, we derive from (6.4), (5.5) and (5.6) that $S^{\frac{N}{2}} \leq \nu_{j}$ if $x_{j} \in \Omega$ and $\frac{S^{\frac{N}{2}}}{2} \leq \nu_{j}$ if $x_{j} \in \partial \Omega$. Similarly, if $\nu_{0}>0$, then $\frac{S^{\frac{N}{2}}}{2} \leq \nu_{0}$, as μ_{0} and ν_{0} satisfy the inequality (5.6). We then have

$$
\begin{aligned}
\frac{1}{2}\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) S^{\frac{N}{2}} & >c+o(1)=\Phi_{\lambda}\left(u_{n}\right)-\frac{1}{2^{*}(s)}\left\langle\Phi_{\lambda}\left(u_{n}\right), u_{n}\right\rangle= \\
& =\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) \int_{\Omega}\left|u_{n}\right|^{p+1} d x
\end{aligned}
$$

Letting $n \rightarrow \infty$ we derive in all these cases that

$$
\frac{1}{2}\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) S^{\frac{N}{2}}>\left(\frac{1}{2}-\frac{1}{2^{*}(s)}\right) \int_{\Omega}|\nabla u|^{2} d x+\frac{1}{2}\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) S^{\frac{N}{2}}
$$

which is impossible. The proof of assertion (ii) is standard and is omitted.
Let $\phi \in H^{1}(\Omega)-\{0\}$. Then for $t>0$ sufficiently large, we have $\Phi_{\lambda}(t \phi)<0$ and $\|t \phi\|>\rho$. Thus the functional Φ_{λ} has a mountain-pass structure for every $\lambda>0$. If $2^{*}(s)<p+1<2^{*}$, then $(P S)_{c}$ condition holds for every $c>0$ and we are in a position to formulate the following existence result:
Theorem 6.4. Let $2^{*}(s)<p+1<2^{*}$ for some $s \in(0,2)$. Then problem (6.1) has a solution for every $\lambda>0$.

In the case $2^{*}(s)<p+1=2^{*}$ we have the following existence result.

Theorem 6.5. Let $2^{*}(s)<p+1=2^{*}$ for some $s \in(0,2)$. Then there exists a constant $\Lambda>0$ such that for every $\lambda \in(0, \Lambda)$ problem (6.1) has a solution.
Proof. We choose a constant $T>0$ such that $\Phi_{\lambda}(T)<0$ and $\|T\|>\rho$. We set

$$
\Gamma=\left\{\gamma \in C\left([0,1], H^{1}(\Omega)\right): \gamma(0)=0, \gamma(1)=T\right\} .
$$

Since the path $\gamma(\sigma)=\sigma T, 0 \leq \sigma \leq 1$, belongs to Γ, we have

$$
\Phi_{\lambda}(\sigma T) \leq \max _{t \geq 0} \Phi_{\lambda}(t)=\frac{\left(p+1-2^{*}(s)\right)}{(p+1) 2^{*}(s)} \frac{\left(\lambda \int_{\Omega} \frac{d x}{|x|^{s}}\right)^{\frac{p+1}{p+1-2^{*}(s)}}}{|\Omega|^{\frac{2^{*}(s)}{p+1-2^{*}(s)}}} .
$$

Thus there exists a constant $\Lambda>0$ such that

$$
\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} \Phi_{\gamma}(\gamma(t)) \leq \frac{\left(p+1-2^{*}(s)\right)}{(p+1) 2^{*}(s)} \frac{\left(\lambda \int_{\Omega} \frac{d x}{|x|^{s}}\right)^{\frac{p+1}{p+1-2^{*}(s)}}}{|\Omega|^{\frac{2^{*}(s)}{p+1-2^{*}(s)}}}<\frac{1}{2}\left(\frac{1}{2^{*}(s)}-\frac{1}{p+1}\right) S^{\frac{N}{2}}
$$

for $0<\lambda<\Lambda$. Hence Proposition 6.3, together with the mountain-pass principle yield, the existence of a solution of problem (6.1).

REFERENCES

[1] Adimurthi, G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honour of G. Prodi, Scuola Norm. Sup. Pisa (1991), 9-25.
[2] Adimurthi, G. Mancini, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math. 456 (1994), 1-18.
[3] A. Ambrosetti, P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
[4] T. Bartsch, Zhi-Qiang Wang, M. Willem, The Dirichlet problem for superlinear elliptic equations, Handbook of Differential Equations, M. Chipot and P. Quittner (eds.), Elsevier B.V., 2005.
[5] H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA 2 (1995), 553-572.
[6] H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure and Appl. Mathematics XXXVI (1983), 437-477.
[7] D. Cao, J. Chabrowski, Critical Neumann problem with competing Hardy potentials, Rev. Mat. Complut. 20 (2007), 309-338.
[8] J. Chabrowski, M. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var. 15 (2002), 421-431.
[9] J. Chabrowski, On the Neumann problem involving the Hardy-Sobolev potentials, Annals of the University of Bucharest (Mathematical Series) 1 (LIX) (2010), 211-228.
[10] J. Chabrowski, On the Neumann problem with with the Hardy-Sobolev potential, Ann. Math. Pura Appl. 186 (2007), 703-719.
[11] J. Chabrowski, The Neumann problem for semilinear elliptic equations with critical Sobolev exponent, Milan J. Mathematics 75 (2007), 197-224.
[12] J. Chabrowski, On the Neumann problem with multiple critical nonlinearities, Complex Variables and Elliptic Equations 55 (2010) 5-6, 501-524.
[13] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
[14] D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations, 2nd ed., Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983.
[15] N. Ghoussoub, C. Yuan, Multiple solutions for quasilinear PDEs involving the critical Sobolev exponents, Trans. Am. Math. Soc. 88 (2000), 5703-5743.
[16] N. Ghoussoub, X.S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincaré Analysis Non Linéaire 21 (2004), 767-793.
[17] Chu-Hsiung Hsia, Chang-Shou Lin, Hidemisu Wadade, Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal. (2010), doi:10(16)jfa.2010.05.004
[18] P.L. Lions, The concentration-compactness principle in the calculus of variations, The limit case. Parts 1,2, Rev. Mat. Iberoamericana 1 (1985) 1, 145-201 and no. 2, 45-121.
[19] J.D. Rossi, Elliptic problems with nonlinear boundary conditions and the Sobolev trace theorem, Handbook of Differential Equations, M. Chipot and P. Quittner (eds.), Elsevier P.V., 2005.
[20] M. Struwe, Variational methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, 1996.
[21] G. Talenti, Best constants in Sobolev inequality, Ann. Math. Pura Appl. 110 (1976), 353-372.
[22] G. Tarantello, Multiplicity results for an inhomogeneous Neumann problem with critical exponent, Manuscripta Math. 81 (1993) 1, 57-78.
[23] X.J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponent, J. Diff. Equations 93 (1991), 283-310.
[24] M. Willem, Min-max Theorems, Birkhäuser, Boston, 1996.

Jan Chabrowski
jhc@maths.uq.edu.au
University of Queensland
Department of Mathematics
St. Lucia 4072, Qld, Australia
Received: August 5, 2013.
Accepted: November 7, 2013.

