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Abstract. We investigate the solvability of the Neumann problem involving two critical
exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three
cases: () 2 < p+1 < 2%(s), (ii) p+ 1 = 2°(s) and (iii) 2*(s) < p+ 1 < 2%, where
2"(s) = 2%\7__25)7 0<s<2 and 2" = % denote the critical Hardy-Sobolev exponent and
the critical Sobolev exponent, respectively.
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1. INTRODUCTION

Let Q ¢ RN, N > 3, be a bounded domain with a smooth boundary 0. Throughout
this paper we assume that 0 € 9€). In this paper we investigate the solvability of the
following nonlinear Neumann problem

u2*(s)—1
—Au+ P = ——— inQ,

5 2] (1.1)

—u:() on 092, u >0 on €,

ov
where 2*(s) = 2(15[\/_—25)’ N > 3,0 < s < 2, is the critical Hardy-Sobolev exponent and
A > 0 is a parameter. It is assumed that 0 € 90 and 2 < p+ 1 < 2%, where 2* is
a critical Sobolev exponent given by 2* = %, N > 3. Obviously 2*(0) = 2*.

Solutions to problem (1.1) are sought in the Sobolev space H'(f2) equipped with

norm
Jull? = [ (9 + 1) do.
Q
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A nonnegative function u € H'(Q) is said to be a weak solution of problem (1.1) if

u2*(s)—1

/(VuVU + AuPv) do = / ————vdz (1.2)
!

|z[*
Q

for every v € H(€). Problem (1.1) is characterized by lack of compactness because
embeddings of the space H' () into spaces L? () and L* () (Q, |z|~*) are continuous
but not compact. The literature on problems involving the critical Sobolev exponent
and the Hardy-Sobolev potential is very extensive. The pioneering paper by Brezis
and Nirenberg [6] has greatly inspired research on nonlinear elliptic problems involving
these critical exponents. For further developments we refer to survey articles [4, 19]
and the monograph [24]. The results of the paper [6], which deals with the Dirichlet
problem have been extended by many authors to the Neumann problem. We mention
here some of them [1,2,7-12,15,16,22] and [23]. This paper has been inspired by the
recent article [17]. The authors of this paper considered a number nonlinear problems,
with the Dirichlet boundary conditions, involving the critical Sobolev exponent and
the Hardy-Sobolev potential. In particular, they considered the following problems:

2%(s)—1

u
—Au+ P = — in Q,
wAt s " (1.3)
u =0 ond2, u>0 on{
and 2 ()1
N42 ue 8~
Au—u¥—2=——— in Q)
U U EE in €, (1.4)
U= 0 09, wu>0 on .

The following two theorems have been established in [17]:

Theorem 1.1. Let A >0, 0€ 9Q, 1 <p < &5, p+1 < 2°(s) with0 < s < 2. If
the mean curvature of 9 at 0 is negative, then problem (1.3) has a solution.

Theorem 1.2. Let A > 0, 0 € 09. Suppose that the mean curvature of 02 at 0
is negative. Then problem (1.4) has a solution provided that one of the following
conditions holds:

(i) N=3and0<s <1,
(iil) N>4and 0 < s <2.

We now observe that equation (1.4) with the Neumann boundary conditions has no
positive solution. Indeed, assuming that « is a solution, it follows from the definition
of a weak solution of (1.4) that

2%(s)—1
)\/u%dx—i—/uﬁdx:()
xS
Q Q

which is impossible.
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In this paper we focus our attention on problem (1.1) which is an extension of (1.3)
to the Neumann boundary conditions. Unlike in paper [17] we consider a full range of
exponents p, 2*(s) and distinguish three cases: (i) 2 < p+1 < 2*(s), (ii) p+1 = 2*(s),
(iii) 2*(s) < p+ 1 < 2*. In particular, a solution in the case (iii) has been obtained
by a local minimization. However,this method cannot be used for the same equation
with the Dirichlet boundary conditions.

The paper is organized as follows. Section 2 contains some information about
minimizers for the best Sobolev and Hardy-Sobolev constants that is used in the next
sections. The existence results for problem (1.1) in these three cases are given in
Sections 3, 4 and 5. In the final Section 6 we discuss the solvability for problem (1.1)
with terms u” and % interchanged.

7 and a weak

Throughout this paper we denote a strong convergence by ” —
convergence by 7 — 7.

Let ¢ : X — R be a C" functional on a Banach space X. We recall that a sequence
{zn} C X is a Palais-Smale sequence for ¢ at a level ¢ € R (a (PS). sequence for
short) if ¢(x,) — ¢ and ¢'(x,) — 0 in X* as n — oo. Finally, we say that the
functional ¢ satisfies the Palais-Smale condition at level ¢ ((PS), condition for short)

if each (PS). sequence is relatively compact in X.

2. PRELIMINARIES

Solutions to problem (1.1) will be sought as critical points of the variational functional

1 A 1 |u|?" ()
JA(’U/) = 5 / |V’U,‘2 dx + m / |u|p+1 dr — 2*(8) |ms
Q Q Q

It is clear that Jy is of class C' on H((Q).
Problems investigated in this paper are closely related to optimal constants of the
Hardy-Sobolev type. The best Sobolev constant is defined by

S:inf{/Vu2dac:u€D1’2(RN),/|u|2* dle},

RN RN

where DM2(RN) = {u € L¥ (RY): Vu € L*(RM)}. S is attained by a family of
functions (see [21])

U (@) :e_N52U<ny), e>0,yeRY,

called instantons, where

N-—2

= (wix o em)
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We also have
/|VU|2dm = /UQ* do = S%
Q RN
and moreover U satisfies the equation
—Au=u*"1 in RV,

The best Sobolev constant can be defined on every domain €. It is well-known that
S is independent of € and is only attained when Q = RV,
The best Hardy-Sobolev constant for the domain Q C RY is defined by

2% (s)
Ms(Q) = inf{/|Vu|2 dx: / U|x|s dr=1,u € H&(Q)}
Q Q

If Q = RY, we write M, instead of M(Q). If s = 0, then My = S. In the case
0 < s <2, My(2) depends on  (see [16]). If s = 2, we obtain the Hardy constant
and M5 is independent of ) and is given by My = (%)2 The constant My is not
attained.

If 0 < s < 2, then My is attained by a family of functions

N-—2
CN62(2*5)
N—2)

2—s
<e + |a:|2—5>

where C'y > 0 is normalizing constant depending on N and s. Moreover, W, satisfies
the equation

We(z) =

2% (s)—1
Au="""" wRY o).

|z[*

Wf*(s) N—s
/|VW€|2dx:/ - de = M.

RN RN

We also have

3. CASE p+1 < 2%(s)

First we show that the functional Jy has a mountain-pass structure. The following
result is well-known (see [16]).

Lemma 3.1. Let 0 € 0. Then there exists a constant Sy > 0 such that

2°(s) \Tm
( [ dx) < Su /(|vu\2 +u?) da
Q Q

jz]?

for every uw € H' ().
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Proposition 3.2. Let 2 < p+1 < 2*(s) and XA > 0. Then there exist constants k > 0

and p > 0 such that
Ia(u) = i for |[ul| = p.

Proof. Tt follows from the Holder inequality that

7T 2
/u2 dx < </|u|erl dm) Q| 7.
Q Q

p+1

/|u|1”le dx > (/u2 dx) \Q|1*pzﬁ.
o) o)

Hence

Thus

M| —

A pid = 1 lu 27(s)
> 2de + |0 / 2 - / .
Jxa(u) > /|vu| dm+p+1| | ( u”dx 7 5) P dx
Q Q

Q

If ||ul]| = p < 1, then [ |Vu|*dz < 1 and
)

pt1
/|Vu|2 dx > (/|Vu2da:)
Q Q

as p+ 1 > 2. From this we obtain the following estimate of J for |lul| = p:

p+1 p+1 "
1 R A _pt1 oz 1 Jul* )
> = 2d ——— 0! / 2d — d
Ia(u) > 5 </|Vu| x) + . 1| '~ ( u® dz > () P x
Q Q Q

Let ¢; = min(3, p%|Q|l‘%). Then using Lemma 3.1 we get
p+1 p+1 *
= = 1 |u 2% (s)
Ia(u) > ¢ (/ Vu|2dac> + (/u2 dx) - / dx >
25(s) ) fal
Q Q Q

Q

Taking p > 0 sufficiently small the estimate (3.1) follows.

(3.1)

O

We now observe that if u = t¢ with ¢ € H'(Q) and ¢ # 0 then Jy(t¢) < 0 for
t > 0 sufficiently large. Thus the functional J has a mountain-pass structure (see [3]).
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Proposition 3.3. Let A > 0 and 2 < p+ 1 < 2*(s). Then Jy satisfies the (PS),
condition for
1/1 1 N-s
== M. 2
<35 2*(3)) (32)

Proof. Let {u,} C H*(Q) be a (PS). sequence with ¢ satisfying (3.2). First we show
that {u,} is bounded in H'(Q). We have

1 1
Ia(un) — m“f\(un)yuﬁ = (5 - m) /|Vun\2dl’+
Q
1 1 |y, |2 (%)
+ A( — ) dr = c+ o(||lunl]).
p+1 - 2%(s) EE (lunll)
Since p—_}_l — 2%(9) > 0 we see that

2 |un|2*(s)
[Vuy,|” de + W dz < C + o(||unl)
Q
for some constant C' > 0. This obviously shows that {u,,} is bounded in H(Q2). Hence
we may assume that u, — u in H'(Q), L* )(Q, |z|~*) and u, — u in LPT1(Q). By
the concentration-compactness principle (see [18]) there exist constants pg > 0 and
1o > 0 such that
(V| = 1> [Vaul? + podo
and 2 (5 2 (s
|un|” ' |ul®
—— v =——+4150
jz]* |[* o
in the sense of measures, where §; denotes the Dirac measure assigned to 0. The
constants vy and g satisfy the inequality

e =2
2~ =57 M, < po. (3.3)

To complete the proof it is sufficient to show that vy = 0. Arguing by contradiction
assume that vo > 0. Testing J5 (u,,) — 0 in H~1(2) by a family of functions ¢;, § > 0,
concentrating at 0 we derive the inequality 1o < . From this and (3.3) we get that

N—s
vo > M . It then follows again from (3.3) that

1 N—s
Ho > 7M927S .

> (34

Thus

2%(5)<J3(un),un> = /\G - 2*15)) Q/ V|2 da+

1 1

M — — AP de.

+ (p+1 2*@))/'“ [ de
Q

J)\(un) —
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Letting n — oo we deduce from this that

N—s
c> 1(E—L)Mﬁ*s,
=2\2 7 25 (s)

which is impossible. Since vy = 0, u,, — u in L2 (*)(Q, ||~*). This and the fact that
J{ (un) — 0 in H~1(Q) imply that u,, — u in H* (). O

A solution to problem (1.1) always exists for A belonging to a small interval (0, A).
Indeed, for t > 0 we have

A t2°6) 1 de
Ia(t) = ——|QPt! —
MO = T e )
Q
and
1 1 ()\|Q|)2*<§%
J t :J tmx :( - ) 1 b
I?Zag( )\() k( a: ) p+1 2*(8) ] thil
()
Q
where

AQ| \ o
tmax = dz .

J fafe

!

If A > 0 satisfies the following inequality

2% (s)

( 1 1 ) (AlQf) T @=r=t <1<1 1 )Mgg;;,

p+1 2%(s) ( d)mfflw 2
[z]*

2 2%(s)

then problem (1.1) has a solution. It is clear that this inequality holds for A belonging
to some interval (0, A).

To verify the validity of the condition (3.2) for each A > 0, we need the following
asymptotic properties of We. Let

[ |Vul?dzx
Q
I(U) = 1;772 )
Ju[2 ) B
(45
then we have
M — H(0)anem + o(e=) for N >4,
W) =428 - ) (35)
S — H(0)byem |loge| +o(ez—5) for N =3,

2N-—s

where H(0) denotes the mean curvature of 92 at 0, and an, by are positive constants
depending on N and s (see [16]).
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Theorem 3.4. Let A > 0 and H(0) > 0.

(i) If N>4,1<p< 55 and 0 < s <1, then problem (1.1) has a solution.
(ii)) f N=3and2<p < 3 and 0 < s < 1 then problem (1.1) has a solution.

Proof. We may assume that A\ = 1. It suffices to verify the condition (3.2). Then the
existence of a solution follows from the mountain-pass theorem [3]. Since p+1 < 2*(s),
there exists a constant ¢, > 0 such that

t2 t (s) WE*( tp+1
max Jy (tW,) = / |VW|? dz — / WPt dg.
>0 2%(s) || p +1
Q Q
It is easy to show that ¢. is bounded independently of ¢ > 0, that is, there exists a
constant T' > 0 such that ¢, < T for every ¢ > 0 (small). From this we deduce that
[IVW,|? dx
awy < (F- L s
TR = (g =

2*(5) 2% (s) N—s
W
e d:v)
<Q |

/ WP de = ( o 235"“’), (3.7)

we see that f WPt dy = 0(62 ) We point out here that

T?DJrl
p +1

/ WPt dz. (3.6)

‘We now observe that

1f—<p Smcep<N 5

conditions p < =5 and 0 < s < 1 yleld p+ 1 < 2*(s). Finally, combining (3.5) with
inequalities (3. 6) and (3.7) we get condition (3.2) and assertions (i) and (ii) follow.
According to Theorem 10 in [5] these mountain-pass solutions can be taken to be

nonnegative and by the strong maximum principle these solutions are positive on {2
(see [14]). O

4. CASEp+1=2%(s),0<s <2

In this case we also have p +1 < 2" = & 2N Ip+1=2%(s) with 0 < s < 2, then

s=N— % Obviously if 1 < p < N+2 , then 0 < s < 2. In this case we look
for a solution of (1.1) as a minimizer of the constramed variational problem

I:inf{/|Vu|2dx: ue HY(Q), /<|19—)\>u|p+1 dle}. (4.1)
ot
Q Q

A minimizer u after rescaling I 7 Tu is a solution of problem (1.1). It is assumed that

a parameter A > 0 satisfies
1 dx

- < 4.2
Q] Jal 2
Q
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To justify this assumption let us assume that u is a solution of problem (1.1).
Testing (1.2) with v = 1 we get

|ul? s
A ulPdx = BE de >d |u|P d,
Q Q Q

where d = diam 2. This inequality implies that A satisfies

A>d70. (4.3)

Obviously inequality (4.2) yields inequality (4.3).

To proceed further we need the following decomposition of the space H'(2). Since
0 is the first eigenvalue of the operator “—A” with the Neumann boundary conditions,
we have the following decomposition of H'():

H'(Q)=V &R with V:{veHl(Q):/vdazzo}.

Using this decomposition we can define an equivalent norm on H'() given by

lul| = |Vol|2 +t* for u=v+t with v €V, t €R.
Lemma 4.1. Let p+ 1 = 2*(s) for some 0 < s < 2. Suppose that (4.2) holds. Then
I>0.

Proof. Arguing by contradiction, assume that I = 0. Let u,, = v,, +tp, v, € V) t, € R
be a minimizing sequence for I = 0. Since ||Vv,||3 — 0, we see that v, — 0 in L?(Q).
We now show that the sequence {¢,} is bounded. In the contrary case we may assume
that ¢, — oo (the case ¢, — —oo can be treated in a similar way). We have

1+>\/|vn+tn\p+1 dx:/|x\_s|vn+tn|p+1 dz, (4.4)
Q o)
that is,
t;p’1+)\/|:—"+1\p+l dx:/urﬂ:—”H\PH dz.
o o) "

Since V is continuously embedded into LP*1(Q) and L? () (€, |z|~*), letting n — oo
in the above equation, we obtain

Q| :/m—s da,
Q

which is impossible. Thus {t,} is bounded and we may assume that ¢, — to. Using
this, we derive a contradiction from (4.4). This contradiction completes the proof. [
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Proposition 4.2. Let p+1 = 2*(s) for some 0 < s < 2 and suppose that (4.2) holds.
If

I< =, (4.5)

then problem (1.1) has a solution.

Proof. Let {u,} be a minimizing sequence for I such that [ (|z|~% — \)|u,[PT!dz =1
0

for each n. We have u, = v, + tp, v, € V,t, € R. Assuming that the se-
quence {t,} is unbounded, we obtain a contradiction, as in the proof of Lemma 4.1.
Thus the sequence {u,} is bounded in H'(Q) and we may assume that u, — u
in H'(Q), L )(Q,|z|~*) and u, — u n LPY(Q). It then follows from the
concentration-compactness principle that there exist constants pg > 0 and vy > 0
such that

[Vun|* = i > [Vul® 4 podo

and
|t |p+1

|z]®

in the sense of measures. The constants o and vy satisfy the following inequality

1
— M [P gt

— )\) + 1/050

2
Msl/m
—%— < o (4.6)
2N—s
Moreover, there holds
1 +1
1= (IT - )\)|u|p dz + vp. (4.7)
I

Q

/ (‘xl|s - )\> lu[PT dz > 0.
Q

In the contrary case we would have

/ (% - )\) Ju[PT™ dz < 0.
)\

By (4.7), we would have vy > 1. It then follows from (4.6) that pg > =

2N-—s

First we show that

Consequently,

M
12/|vu\2dx+uoz o
2N—s
Q
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which is impossible. From the definition of I we derive, using (4.5) and (4.6) that

2

p+1 ﬁ M. p+1
rza( [ (M ) an) T M
x|® IN=>s
Q

] L
>I</( oF —)\|u|p+1) dx> e
o
Q
Ju|P T 2
1> — NulPTY) da e
|]® 0
X
Q

This is obviously in contradiction with (4.7). Therefore pp = vp = 0 and the mini-
mizing sequence {u,,} converges in H'(2) to u. A minimizer u, up to a multiplicative
constant, is a solution of problem (1.1). Indeed, let ¢ € H'(£2) and set

JIV(u+te)?de
Q

Thus

flt) =

2
7% (9)

(g{(hls = A+t dx)

for t small. Since f/(0) = 0, we get
2% (s)—2
/VquSdm = I/|u|||sudx.
x
Q Q

We now set u = —4—v and it is easy to check that v is a solution of problem (1.1).
p—1

Since |u| is also a minimizer for I, we may assume that u is nonnegative and by the
strong maximum principle u(z) > 0 on Q. O

Theorem 4.3. Let p+ 1 = 2*(s) for some 1 < s < 2 and H(0) > 0. Suppose that
(4.2) holds. Then (4.5) holds and problem (1.1) has a solution.

Proof. The assumption that 1 < s < 2 implies that p < % To verify (4.5) we need

the following asymptotic properties of W, (see [16]). Let Ki(e) = [|[VW|?dz and
Q

Ky(e)= [ W2 9 4z. We then have (see [16])
Q

[]*

Ki(e) = %Kl —I(e) —|—0(eﬁ),
Ka(e) = %KQ — () + o(e75),
where
K :c?V(Nf2)2/ by

pn (L4 y2s) ==
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2% (s dy
Ky = CN( ) / 2(N—35) °
g [yf (L4 [y[2=e) 2

lim E_ﬁl(e) = H(0)Ay and HI% e_ﬁﬂ(e) = H(0)By,
€E—r

e—0

—s

where Ax > 0 and By > 0 are constants depending on N and s. We also have

I (N-2K
i)~ (V= S)K;'

Since 1 < s < 2, it is easy to check that

2N —(N—2)(p+1)

/Wg+1 do = O(" =Y Z 0(e5%) = oc2).
Q

Using these asymptotic formulae we can write

(fz‘VWEF dx 1

2

<f(W|i*f) W) da;) o (;Kz —TI(e) + 0(6215)) o
Q

M
= > — H(0)ayeT> +0(€2i9)
IN-—s
for some constant ay depending on N and s. This obviously yields (4.5). O

5. CASE 2%(s) <p4+1<2*,0<s<2

*()—
In this case we modify equation (1.1) by moving a parameter A to the term %,
that is, we consider the following problem
w2 (91
—Au+u’ =A———— in Q,

. Ed (5.1)

— =0 on 9, wu>0on .

v

In fact, problem (1.1) can be reduced to (5.1) by introducing a new unknown function
w = \"7-Ty. Then v satisfies the equation

. 2% (s)—1
2 s)—2
—Av+vP =)\ oY

||

The variational functional for problem (5.1) is given by
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Theorem 5.1. Let 2*(s) < p+ 1 < 2*. Then there exists Ao > 0 such that problem
(5.1) has a solution for each 0 < X\ < Ao (consequently problem (1.1) has a solution

__p=1
for A > X, 7%,
Proof. First we consider the case 2*(s) < p+1 = 2*. As in the proof of Proposition 3.2

we obtain the following estimate

2% (s)

122 pt1 Su” 2%(s)
In(u) > 1272 pP™ = Ao —p

2*(s)

1_pt1

for ||ul| = p < 1, where ¢; = min(3, ‘le%) Let
2—s
272 9%(s) M|
1272 S s
Q:lﬁ and 0<,0<min(17 ~— )
25,2 2¢,7°
We choose A\ satisfying
= 2
Sy2 pt 8 1 —p o
=2 — 2273
0T 9 (s) 21t " P
that is,
1277 2%(s 2s 2s
Ao = - 2*(s)( )PN’Q = CopN—2
25,2
Then .
I(w) > 5er2 '3 )
for [[ul| = pand 0 < XA < Ag. We also have d = inf), <, Ix(u) < 0 for each

0 < XA < Ag. By the Ekeland variational principle (see [13]) there exists a sequence
{un} C {u: ||ul| < p} such that I(u,) = d and I§(u,) — 0 in H (). Applying the
P.L. Lions’ concentration-compactness principle (see [18]) there exist points {z;} C
and constants v, u;, j € J U {0} such that

|V |* dz — du > |Vul® dz + ) s, + podo (5.2)
JjeJ
lun|?” dz — dv = |u|*" dz + Zl/jéwj + 1pdg, (5.3)
jed
2°(s) 2°(s)
[l g s dy [ + 7000, (5.4)
|z[* |z[*

Sv? <y if 2, €Q,5€ (5.5)
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S =
2—%%?* <p; if x; €0Q, 5 € J, (5.6)
and
=% < Ho (5.7)
IN-—s

Testing I} (u,) — 0 in H~1(Q) with u,¢5, where s, § > 0, is a family of C''-functions
concentrating at z; as 0 — 0 we deduce that

pi +v; =0 for jeJ

This shows that the concentration can only occur at 0 € 9€). In a similar way we can
show that g 4+ 9 < Ay. It suffices to show that vg = 0. Arguing by contradiction
assume that o > 0. Since pg < Ayo, we derive from (5.7) that

N—s
1/ M\ >
— <. .
(%) = 5:8)
This combined with (5.7) gives
N-—s
2—s
SN—z < Ho- (59)
AT

Since ||up| < p, we get from (5.9) and (5.2) that

N-—s N-—s
Mz Mz
p? > lim [ (|Vu,|> +ul) de > —— > ——- (5.10)
n—00 A2—s N2~
o) 0

According to the choice of A\g we derive from (5.10) that

N—s
2—s
2y Ms7

Hence

M2\
p= ( N_2>
2¢5°
and we have arrived at a contradiction with the choice of p. This completes the proof
for the case 2*(s) < p+1 = 2*. If 2*(s) < p+ 1 < 2*, then the concentration of
a minimizing sequence can only occur at 0 € 9. In this case we choose \g in the
following way
¢1272"2%(s) .
Ao = =~ 2 2% ppHl=27(s),

2% (s)
25,2
Arguing as in the first part of the proof we can show the existence of a solution of
problem (5.1). O
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6. FINAL REMARKS

In this section we consider problem (1.1) with terms u? and % interchanged,

that is, we are concerned with the following problem

2%(s)—1

—Au+ )‘75 =uP in Q,
2] ] (6.1)
—u:O on J, wu>0on{,
v

where A\ > 0 is a parameter and it is assumed that 0 € 02. As in the case of prob-
lem (1.1) we distinguish three cases: (i) 2 < p+ 1 < 2*(s), (ii) p + 1 = 2*(s) and
(iii) 2*(s) < p+ 1 < 2*. Solutions to problem (6.1) are sought as critical points of the
variational functional

1 A |u|?" () 1
Dy (u) = = 2 dr — —— P g,
Q Q Q

Case (1).

Theorem 6.1. Let 1 < p+ 1 < 2*(s) for some 0 < s < 2. Then for each A > 0
problem (6.1) has a solution. Let uy be a solution corresponding to A > 0. Then
luxll = 0 as A — oo.

Proof. We commence by showing that functional ®, is coercive for each A > 0. Let

d = diam ). We then have
/| 12°) da — 7/|u|p+1da:

/\vu|2dx+

Using the Young inequality for each 6 > 0 we have

2% (s)
Fzay 1 . 2%(s) —p—1 2% (s)
Jrurta < 2D [lupo g TR )
Q

*(s s)

We choose ¢ so that

(p+1)574% A
2:(s)  22%(s)d*
Thus
1 A . 2%(s) —p —
i) - 2 A 2% (s) R SV 2*() p le)
025 [ 194l dm+22*(s)d3/|u| do - Gl Q.
Q Q

This inequality shows that ®) is coercive. It is clear that ®, is weakly lower semicon-
tinuous in H'(£). Moreover, for ¢t > 0 small enough

Oy\(t) =

27 () d o+l
/ v 2] < 0.

2°(s) J lal* p+1
Q
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Hence co < inf,cpi(q), Pa(u) < 0 and the existence of a minimizer follows from
Theorem 1.2 in [20]. The second part of this theorem follows from the following
inequality

A " 27(s)
—’/\UA\Q (s) dm§/|Vu>\|2d:c+)\ fun” —dx =
déQ / ||
+1 . 2%(s)—p—1
- P g < P / @) gpr 2 TP g O
Q/IW EREECY A O

Case (i1).

In this case we were unable to find a solution for problem (6.1) through a con-
strained minimization. Following the argument used for problem (1.1) in this case, we
observe that if u is a solution of problem (6.1) then

.
)\/ Jul” dx:/|u\P+1 dz.
|[*
Q Q

This yields Add~* < 1. As in the case of problem (1.1) we introduce a stronger condition

dr

|z[*

A
Q

<9 (6.2)

which obviously implies that Add~* < 1. Under assumption (6.2) the constrained min-
imization does not produce a solution for problem (6.1). Indeed, let

m:inf{/|Vu|2dx:uEH1(Q), /(1—|)\|S>|up+1dx:1}.
x

Q Q

_1
By (6.2) a constant function (fQ (1 — ﬁ) dm) »+1 belongs to the set of constraints
and consequently m = 0.
Case (ii1).

First, we show that the functional ®, has a mountain-pass structure. For
2<p+1<2" we set

J(IVul]? + v?) d

S, = inf Q .
P emi(@) {0} ( =

J lufptt dx) ’
Q

Proposition 6.2. Let 2*(s) < p+1 < 2*. Then for every A > 0 there exist constants
0<p<1andr >0 such that

Oa(u) =2 K for |lull = p.
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Proof. Since ||lu]| = p < 1, we have

/ |Vul? dz +

1
/I [#d ?/Iuv”“dxz
1 9 A 1-2°) 9
— d Q d Pl dr >
2/\Vu\ I+2*(s)ds‘ | 2 </u T p+1 [l T
Q Q

*(s)

2% ()
1 2 2 A 1_2° / 2
2</|Vu| dm) + 2*(s)d8m| 2 < u’ dx
Q
er1/|u|p'|r1 dx.

Let ¢; :min(éﬂ*(sd Q- = H) Then

\%

2% (s)

P (u) = 02 </(|VU|2 +u?) dw) -

Q

+1

Q

2-2%(s) ox 1 _ptl
=27 pr ) g T L
1 P pr17? P
Taking p € (0, 1) sufficiently small the result follows. O

Proposition 6.3. The following holds:
(1) Let2*(s) < p+1=2* for some s € (0,2). Then ®, satisfies the (PS). condition

for 1 1 1
€= 5(2*(3) _ﬁ)s%'

(ii) If 2*(s) <p+1 < 2* for some s € (0,2), then the (PS). condition holds for all
c>0.

Proof. (i) Let {u,} C H*(Q) be a (PS). sequence for ®,, that is ®,(u,) — ¢ and
P!\ (un) — 0 in H~1(Q). First, we show that the sequence {u,} is bounded in H'(2).
We have

c+o(1) + o[|unl) = ®x(un) —

.
2%(s)

:D+1d
+(2 (s) p+1 /|u| -

(@A (un), un) = (% - 2*1(5)>Q/|V“"|2dfH
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From this we deduce that

/|Vu|2dx+/|un|p+1 do < C(1+ |lun]) (6.3)
Q Q

for some constant C' > 0. Since

2
p+1
/u?7 dx < \Q|1_% </ |un|p+1 dm) ,
Q Q

we deduce that {u,} is bounded in H!(Q). Hence we may assume that u, — u in
HY(Q), LPT1(Q) and L? )(Q,|x|*). By the P.L. Lions concentration-compactness
principle there exist points {z;} C Q and constants vj, b, 3 € J, 70, vo and pg such
that (5.2)—(5.7) hold. Moreover, we have

Wi <vi, jed. (6.4)
and

po + Ao < vo. (6.5)
It suffices to show that v; = vy = 0 for j € J. Assuming that v; > 0 for some j € J,

N
2

we derive from (6.4), (5.5) and (5.6) that S= < v; if 2; € Q and 52 <y ifz; € 00
N

Similarly, if g > 0, then % < vy, as po and vy satisfy the inequality (5.6). We then
have

1 1 1 N 1
5(2*7(5) _ m)52 >c+o(l) = x(un) — m@A(Un),“n) =

- (% a 2*1(s)> / V] do + (2*1(3) - ]ﬁ) /|un‘P+1 -
Q Q

Letting n — oo we derive in all these cases that
1/ 1 1 N 1 1 1/ 1 1
Lot 5055 > G ) [7ohin 3y )
2(2*(3) p—|—1) >3 we) ) V(G T T
Q

which is impossible. The proof of assertion (ii) is standard and is omitted. O

Let ¢ € H'(Q) — {0}. Then for ¢ > 0 sufficiently large, we have ®,(t¢) < 0 and
lté]| > p. Thus the functional ®, has a mountain-pass structure for every A > 0.
If 2*(s) < p+1 < 2%, then (PS), condition holds for every ¢ > 0 and we are in a
position to formulate the following existence result:

v|Z

Theorem 6.4. Let 2*(s) < p+1 < 2* for some s € (0,2). Then problem (6.1) has a
solution for every A > 0.

In the case 2*(s) < p+ 1 = 2* we have the following existence result.
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Theorem 6.5. Let 2*(s) < p+ 1 = 2* for some s € (0,2). Then there exists a
constant A > 0 such that for every A € (0,A) problem (6.1) has a solution.

Proof. We choose a constant T' > 0 such that ®5(T") < 0 and ||T']| > p. We set
D= {ye (0,1, H(Q)): 7(0) =0, (1) = T}.
Since the path v(o) = ¢T, 0 < o < 1, belongs to I, we have
P+1*
d > p+1—2%(s)

_9* El
Bx(0T) < maxdy(t) = L2 o T/

Thus there exists a constant A > 0 such that

(1 )75
(p+1-2%(s)) " I 1(1 ! )s%

inf max ®,(y(t)) < — <z -
AR STe  gee 2\ prd
for 0 < A < A. Hence Proposition 6.3, together with the mountain-pass principle
yield, the existence of a solution of problem (6.1). O
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