PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution and dynamic recrystallization mechanisms of 316L stainless steel during hot deformation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Through isothermal compression testing at various temperatures and strain rates, the thermal deformation behavior of 316L stainless steel was investigated. Utilizing corrected true stress–strain data, an Arrhenius constitutive model with strain compensation was developed. Electron backscatter diffraction and transmission electron microscopy were employed to study the microstructure of the compressed specimens, revealing substantial impacts of temperature and strain rate. Higher temperatures boosted the transition from low-angle to high-angle grain boundaries (HAGB), while also increasing the volume percentage of dynamic recrystallization (DRX) and grain size. The impacts of Dynamic Grain Growth/Dynamic Abnormal Grain Growth restricted DRX at higher deformation temperatures and lower strain rates, but at lower temperatures, HAGB reduced with increasing strain rate. As a result, the proportion of HAGB and the volume fraction of recrystallization both decreased. The percentage of ∑3 n (1 ≤ n ≤ 3) twin boundaries also rose with temperature and followed a similar pattern to HAGB with strain rate. High temperature and high strain rate were the ideal formation conditions. Discontinuous dynamic recrystallization (DDRX) was the predominant DRX mechanism in the steel during thermal deformation, with continuous dynamic recrystallization (CDRX) acting as an auxiliary mechanism largely occurring in the low-temperature and high-strain-rate processing conditions like 1273–1323 K, 0.1–1 s −1 . Additionally, when the temperature rose, CDRX was suppressed while DDRX was encouraged.
Rocznik
Strony
art. no. e35, 2024
Opis fizyczny
Bibliogr. 47 poz., rys., wykr.
Twórcy
  • Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Upgrading Office of Modern College of Humanities and Sciences of Shanxi Normal University, Linfen 041000, China
autor
  • Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
  • Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
  • Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
autor
  • Engineering Research Center Heavy Machinery Ministry of Education, Taiyuan University of Science and Technology, Taiyuan 030024, China
  • Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
Bibliografia
  • 1. Li S, Withers PJ, Kabra S, Yan K. The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures. Mater Sci Eng A. 2023;880: 145279. https://doi.org/10.1016/j.msea.2023.145279.
  • 2. Donadille C, Valle R, Dervin P, Penelle R. Development of texture and microstructure during cold-rolling and annealing of F.C.C.alloys: example of an austenitic stainless steel. Acta Metall.1989;37:15–47. https://doi.org/10.1016/0001-6160(89)90123-5.
  • 3. Nezakat M, Akhiani H, Hoseini M, Szpunar J. Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L. Mater Charact. 2014;98:10. https://doi.org/10.1016/j.matchar.2014.10.006.
  • 4. Li Y, Zhang Y, Chen Z, Ji Z, Zhu H, Sun C, et al. Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy. J Alloys Compd. 2020;847: 156507. https://doi.org/10.1016/j.jallcom.2020.156507.
  • 5. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32:1733–59. https://doi.org/10.1016/j.matdes.2010.11.048.
  • 6. Li J, Zhao G, Ma L, Chen H, Li H, Huang Q, Zhang W. Hot Deformation behavior and microstructural evolution of anti-bacterial austenitic stainless steel containing 3.60% Cu. J Mater Eng Perform. 2018;27:1847–53. https://doi.org/10.1007/s11665-018-3274-1.
  • 7. Song Y, Wang S, Zhao G, Li Y, Li J, Zhang J. Hot deformation behavior and microstructural evolution of 2205 duplex stainless steel. Mater Res Express. 2020;7: 046510. https://doi.org/10.1088/2053-1591/ab8529.
  • 8. Ouyang L, Luo R, Gui Y, Cao Y, Chen L, Cui Y, et al. Hot deformation characteristics and dynamic recrystallization mechanisms of a Co-Ni-based superalloy. Mater Sci Eng A. 2020;788: 139638.https://doi.org/10.1016/j.msea.2020.139638.
  • 9. Song Y, Li Y, Li H, Zhao G, Cai Z, Sun M. Hot deformation and recrystallization behavior of a new nickel-base superal-loy for ultra-supercritical applications. J Mater Res Technol.2022;19:4308–24. https://doi.org/10.1016/j.jmrt.2022.06.141.
  • 10. Qu J, Xie X, Bi Z, Du J, Zhang M. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based super alloy. J Alloys Compd. 2019;785:918–24. https://doi.org/10.1016/j.jallcom.2019.01.237.
  • 11. Wen H, Tang X, Jin J, Cai C, Yang H, Teng Q, et al. Effect of extrusion ratios on microstructure evolution and strengthening mechanisms of a novel P/M nickel-based superalloy. Mater Sci Eng A. 2022;847: 143356. https://doi.org/10.1016/j.msea.2022.143356.
  • 12. Song Y, Li Y, Zhao G, Liu H, Li H, Li J, Liu E. Electron backscatter diffraction investigation of heat deformation behavior of 2205 duplex stainless steel. Steel Res Int. 2021;92:2000587. https://doi.org/10.1002/srin.202000587.
  • 13. Qin DH, Wang MJ, Sun CY, Su ZX, Qian LY, Sun ZH. Interaction between texture evolution and dynamic recrystallization of extruded AZ80 magnesium alloy during hot deformation. Mater Sci Eng A. 2020;788: 139537. https://doi.org/10.1016/j.msea.2020.139537.
  • 14. Zhong XT, Wang L, Huang LK, Liu F. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy028 alloy. J Mater Sci Technol. 2020;42:241–53. https://doi.org/10.1016/j.jmst.2019.08.058.
  • 15. Cao Y, Di H, Misra RDK, Yi X, Zhang J, Ma T. On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model. Mater Sci Eng A. 2014;593:111–9.https://doi.org/10.1016/j.msea.2013.11.030.
  • 16. Field DP, Bradford LT, Nowell MM, Lillo TM. The role of annealing twins during recrystallization of Cu. Acta Mater.2007;55(12):4233–41. https:// doi. org/ 10. 1016/j. actam at. 2007.03.021.
  • 17. Haasen P. How are new orientations generated during primary recrystallization? Metall Trans B. 1993;24:225–39. https://doi.org/10.1007/BF02659125.
  • 18. Liu J, Zhang W, Xin X, Wang L, Zhu C, Zhu X, Sun W. Micro-structure evolution and dynamic recrystallisation behaviour in hot deformation of Haynes 214 superalloy. J Alloys Compd.2022;919: 165755. https://doi.org/10.1016/j.jallcom.2022.165755.
  • 19. Wan Z, Hu L, Sun Y, Wang T, Li Z. Hot deformation behavior and processing workability of a Ni-based alloy. J Alloys Compd.2018;769:367–75. https://doi.org/10.1016/j.jallcom.2018.08.010.
  • 20. Li Y, Song Y, Xu H, Li H, Tian Y, Yao L, Sun H. Hot deformation and constitutive model of as-cast Ni-Cr-Co nickel-base alloy. Int J Mater Res. 2022;113:992–1011. https:// doi. org/ 10. 1515/ijmr-2021-8716.
  • 21. Evans RW, Scharning PJ. The θ projection method applied to small strain creep of commercial aluminium alloy. Mater SciTechnol. 2001;17:487–93. https://doi.org/10.1179/026708301101510276.
  • 22. Goetz RL, Semiatin SL. The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform. 2001;10:710–7. https:// doi. org/ 10. 1361/ 10599 4901770344593.
  • 23. Sakai T. Dynamic recrystallization microstructures under hotworking conditions. J Mater Process Technol. 1995;53:349–61.https://doi.org/10.1016/0924-0136(95)01992-N.
  • 24. Allain-Bonasso N, Wagner F, Berbenni S, Field DP. A study of the heterogeneity of plastic deformation in IF steel by EBSD. Mater Sci Eng A. 2012;548:56–63. https://doi.org/10.1016/j.msea.2012.03.068.
  • 25. Wu Z, Liu S, Hasan MN, Li E, An X. The hot deformation behavior in austenite-ferrite heterostructured low density Fe-Mn-Al-C steel. Mater Today Commun. 2023;37: 107184. https://doi.org/10.1016/j.mtcomm.2023.107184.
  • 26. Jia Z, Gao ZX, Ji JJ, Liu DX, Guo TB, Ding YT. High-temperature deformation behavior and processing map of the as-cast Inconel625 alloy. Rare Met. 2021;40:2083–91. https://doi.org/10.1007/s12598-020-01474-6.
  • 27. Setia P, Mukherjee S, Singh SS. Deformation characteristics and microstructure evolution during hot deformation of 18Cr-12Ni-4Si stainless steel. J Mater Sci. 2023;58:4987–5009. https://doi.org/10.1007/s10853-023-08308-7.
  • 28. Sun H, Sun Y, Zhang R, Wang M, Tang R, Zhang Z. Hot deformation behavior and microstructural evolution of a modified 310austenitic steel. Mater Des. 2014;64:374–80. https://doi.org/10.1016/j.matdes.2014.08.001.
  • 29. Xu S, He J, Zhang R, Zhang F, Wang X. Hot deformation behaviors and dynamic softening mechanisms of 7Mo super-austenitic stainless steel with high stacking fault energy. J Mater Res Tech-nol. 2023;23:1738–52. https://doi.org/10.1016/j.jmrt.2023.01.108.
  • 30. Mirzadeh H, Najafizadeh A, Moazeny M. Flow curve analysis of 17–4 PH stainless steel under hot compression test. Metall Mater Trans A. 2009;40:2950–8. https:// doi. org/ 10. 1007/s11661-009-0029-5.
  • 31. Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59:6441–8. https://doi.org/10.1016/j.actamat.2011.07.008.
  • 32. Jonas JJ, Sellars CM, Tegart WJM. Strength and structure under hot-working conditions. Metall Rev. 1969;14:1–24. https://doi.org/10.1179/mtlr.1969.14.1.1.
  • 33. Sellars CM, Tegart WJM. On the mechanism of hot deformation. Acta Metall. 1966;14:1136–8. https://doi.org/10.1016/0001-6160(66)90207-0.
  • 34. Zhao G, Tian Y, Song Y, Li J, Li H, Zhang J. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation. Crystals.2022;12:1262. https://doi.org/10.3390/cryst12091262.
  • 35. Zener C, Hollomon JH. Effect of strain rate upon plastic flowof steel. J Appl Phys. 1944;15:22–32. https://doi.org/10.1063/1.1707363.
  • 36. Zhang J, Wu C, Peng Y, Xia X, Li J, Ding J, Liu C, Chen X, Dong J, Liu Y. Hot compression deformation behavior and processing maps of ATI 718 Plus superalloy. J Alloys Compd. 2020;835:155195. https://doi.org/10.1016/j.jallcom.2020.155195.
  • 37. Ahmadi H, Ashtiani HRR, Heidari M. A comparative study of phenomenological, physically-based and artificial neural network models to predict the Hot flow behavior of API 5CT-L80 steel. Mater Today Commun. 2020;25: 101528. https:// doi. org/ 10.1016/j.mtcomm.2020.101528.
  • 38. Wu Z, Tang Y, Chen W, Lu L, Li E, Li Z, Ding H. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map. Vacuum. 2019;159:447–55. https://doi.org/10.1016/j.vacuum.2018.10.079.
  • 39. Gao Q, Zhang H, Li H, Zhang X, Qu F, Jiang Y, Liu Z, Jiang C.Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior. J Mater Sci. 2019;54:8760–77. https://doi.org/10.1007/s10853-019-03513-9.
  • 40. Wang K, Wen DX, Li JJ, Zheng ZZ, Xiong YB. Hot deformation behaviors of low-alloyed ultra high strength steel 30CrMnSiNi2A:microstructure evolution and constitutive modeling. Mater Today Commun. 2021;26: 102009. https://doi.org/10.1016/j.mtcomm.2021.102009.
  • 41. Wang KM, Jing HY, Xu LY, Zhao L, Han YD, Li HZ, Song K. Microstructure evolution of 55Ni-23Cr-13Co nickel-based super-alloy during high-temperature cyclic deformation. Trans Nonferr Met Soc China. 2021;31:3452–68. https://doi.org/10.1016/S1003-6326(21)65742-4.
  • 42. Cao Y, Di HS, Zhang JQ, Zhang JC, Ma TJ, Misra RDK. An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation. Mater Sci Eng A. 2013;585:71–85. https://doi.org/10.1016/j.msea.2013.07.037.
  • 43. Randle V. Twinning-related grain boundary engineering. Acta Mater. 2004;52:4067–81. https://doi.org/10.1016/j.actamat.2004.05.031.
  • 44. Kumar SSS, Raghu T, Bhattacharjee PP, Rao GA, Borah U. Evolution of microstructure and microtexture during hot deformation in an advanced P/M nickel base superalloy. Mater Charact.2018;146:217–36. https://doi.org/10.1016/j.matchar.2018.10.008.
  • 45. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Microstructure evolution of Cu-30Zn during friction stir welding. J Mater Sci.2018;53:10423–41. https://doi.org/10.1007/s10853-018-2313-5.
  • 46. Lin YC, Wu XY, Chen XM, Chen J, Wen DX, Zhang JL, Li LT.EBSD study of a hot deformed nickel-based superalloy. J Alloy Compd. 2015;640:101–13. https://doi.org/10.1016/j.jallcom.2015.04.008.
  • 47. Yang J, Luo J, Li X, Li M. Evolution mechanisms of recrystallized grains and twins during isothermal compression and subse-quent solution treatment of GH4586 superalloy. J Alloy Compd.2021;850: 156732. https://doi.org/10.1016/j.jallcom.2020.156732.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-423d9f39-e358-4c59-91ee-db2736460205
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.