PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Business Model for Access to Affordable RE on Economic, Social, and Environmental Value: A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Renewable energy has the potential to power the global economy and effective business models will significantly aid this goal, being among the most critical factors in spurring expansion in the energy industry. This paper reviews articles that discuss business models in the renewable energy sector. Longterm economic, social, and ecological stability is concerned. Previous studies have neglected the environmental sustainability of renewable energy business models, focusing on their technical, social, and economic aspects, primarily for energy access. The business models for solar home and pico systems relied heavily on lowering costs through creative payment plans for customers to be commercially viable. The demand for mini-grids requires end users to launch businesses that can leverage electrification initiatives to be commercially viable. The success of a mini-grid depends on the average consumption and revenue per user. Affordability, unmet energy needs, low electricity demand, lack of financing, unfamiliar business models, and immature markets have impeded energy access in Indonesia. Our analysis revealed that future studies in this field must include environmental sustainability to provide a complete picture for decision-makers. Renewable energy needs in Indonesia can be achieved through the sustainability domain, policy makers can consult this evidence set.
Słowa kluczowe
Rocznik
Strony
5--43
Opis fizyczny
Bibliogr. 169 poz.
Twórcy
autor
  • University of Malaysia Pahang, Centre for Automotive Engineering, Pekan, Malaysia
  • Serambi Mekkah University, Faculty of Engineering, Banda Aceh, Indonesia
autor
  • Syiah Kuala University, Department of Chemical Engineering, Banda Aceh, Indonesia
  • University of Malaysia Pahang, Centre for Automotive Engineering, Pekan, Malaysia
  • Serambi Mekkah University, Department of Environment Engineering, Banda Aceh, Indonesia
  • Serambi Mekkah University, Department of Industrial Engineering, Banda Aceh, Indonesia
autor
  • Polytechnic of Sultan Mizan Zainal Abidin, Dungun, Terengganu, Malaysia
  • Syiah Kuala University, Department of Chemical Engineering, Banda Aceh, Indonesia
  • Indonesia University of Education, Faculty of Mathematics and Science, Department of Chemistry, Bandung, Indonesia
Bibliografia
  • Erdiwansyah, Mahidin, Husin H., Nasaruddin, Zaki M., Muhibbuddin: A critical review of the integration of renewable energy sources with various technologies. Protection and Control of Modern Power Systems, vol. 6, 2021, 3. https://doi.org/10.1186/s41601-021-00181-3.
  • Erdiwansyah E., Mahidin M., Husin H., Khairil K., Zaki M., Jalaluddin J.: Investigation of availability, demand, targets, economic growth and development of RE 2017–2050: Case study in Indonesia. International Journal of Coal Science & Technology, vol. 8, 2021, pp. 483–499. https://doi.org/10.1007/s40789-020-00391-4.
  • Erdiwansyah, Mahidin, Mamat R., Sani M.S.M., Khoerunnisa F., Kadarohman A.: Target and demand for renewable energy across 10 ASEAN countries by 2040. The Electricity Journal, vol. 32, 2019, 106670. https://doi.org/10.1016/J.TEJ.2019.106670.
  • Utama A.: Half a million Indonesian households live without electricity. BBC News Indonesia, 21.06.2021. https://www.bbc.com/indonesia/indonesia-57766814 [access: 7.07.2023].
  • Alifdini I., Iskandar N.A.P., Nugraha A.W., Sugianto D.N., Wirasatriya A., Widodo A.B.: Analysis of ocean waves in 3 sites potential areas for renewable energy development in Indonesia. Ocean Engineering, vol. 165, 2018, pp. 34–42. https://doi.org/10.1016/j.oceaneng.2018.07.013.
  • Wirawan H., Gultom Y.M.L.: The effects of renewable energy-based village grid electrification on poverty reduction in remote areas: The case of Indonesia. Energy for Sustainable Development, vol. 62, 2021, pp. 186–194. https://doi.org/10.1016/j.esd.2021.04.006.
  • Erdiwansyah, Mamat R., Sani M.S.M., Sudhakar K.: Renewable energy in Southeast Asia: Policies and recommendations. Science of the Total Environment, vol. 670, 2019, pp. 1095–1102. https://doi.org/10.1016/j.scitotenv.2019.03.273.
  • Guajardo J.A.: Repayment performance for pay-as-you-go solar lamps. Energy for Sustainable Development, vol. 63, 2021, pp. 78–85. https://doi.org/10.1016/j.esd.2021.06.001.
  • Yang F., Yang M.: Rural electrification in sub-Saharan Africa with innovative energy policy and new financing models. Mitigation and Adaptation Strategies for Global Change, vol. 23, 2018, pp. 933–952. https://doi.org/10.1007/s11027-017-9766-8.
  • Vanadzina E., Pinomaa A., Honkapuro S., Mendes G.: An innovative business model for rural sub-Saharan Africa electrification. Energy Procedia, vol. 159, 2019, pp. 364–369. https://doi.org/10.1016/j.egypro.2019.01.001.
  • Cabanero A., Nolting L., Praktiknjo A.: Mini-grids for the sustainable electrification of rural areas in sub-Saharan Africa: Assessing the potential of KeyMaker models. Energies, vol. 13(23), 2020, 6350. https://doi.org/10.3390/en13236350.
  • Duran A.S., Sahinyazan F.G.: An analysis of renewable mini-grid projects for rural electrification. Socio-Economic Planning Sciences, vol. 77, 2021, 100999. https://doi.org/10.1016/j.seps.2020.100999.
  • Abada I., Othmani M., Tatry L.: An innovative approach for the optimal sizing of mini-grids in rural areas integrating the demand, the supply, and the grid. Renewable and Sustainable Energy Reviews, vol. 146, 2021, 111117. https://doi.org/10.1016/j.rser.2021.111117.
  • Moner-Girona M., Solano-Peralta M., Lazopoulou M., Ackom E.K., Vallve X., Szabó S.: Electrification of Sub-Saharan Africa through PV/hybrid mini-grids: Reducing the gap between current business models and on-site experience. Renewable and Sustainable Energy Reviews, vol. 91, 2018, pp. 1148–1161. https://doi.org/10.1016/j.rser.2018.04.018.
  • Bhattacharyya S.C., Palit D.: Mini-grid based off-grid electrification to enhance electricity access in developing countries: What policies may be required? Energy Policy, vol. 94, 2016, pp. 166–178. https://doi.org/10.1016/j.enpol.2016.04.010.
  • Come Zebra E.I., van der Windt H.J., Nhumaio G., Faaij A.P.C.: A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries. Renewable and Sustainable Energy Reviews, vol. 144, 2021, 111036. https://doi.org/10.1016/j.rser.2021.111036.
  • Muchunku C., Ulsrud K., Palit D., Jonker-Klunne W.: Diffusion of solar PV in East Africa: What can be learned from private sector delivery models? Wiley Interdisciplinary Reviews: Energy and Environment, vol. 7(3), 2018, e282. https://doi.org/10.1002/wene.282.
  • Ford R., Hardy J.: Are we seeing clearly? The need for aligned vision and supporting strategies to deliver net-zero electricity systems. Energy Policy, vol. 147, 2020, 111902. https://doi.org/10.1016/j.enpol.2020.111902.
  • Mukisa N., Zamora R., Lie T.T.: Viability of the store-on Grid Scheme model for gridtied rooftop solar photovoltaic systems in Sub-Saharan African countries. Renewable Energy, vol. 178, 2021, pp. 845–863. https://doi.org/10.1016/j.renene.2021.06.126.
  • Mukisa N., Zamora R., Lie T.T.: Diffusion forecast for grid-tied rooftop solar photovoltaic technology under store-on grid scheme model in Sub-Saharan Africa: Government role assessment. Renewable Energy, vol. 180, 2021, pp. 516–535. https://doi.org/10.1016/j.renene.2021.08.122.
  • Mukisa N., Zamora R., Lie T.T.: Store-on grid scheme model for grid-tied solar photovoltaic systems for industrial sector application: Benefits analysis. Renewable Energy, vol. 171, 2021, pp. 1257–1275. https://doi.org/10.1016/j.renene.2021.02.162.
  • Setyawati D.: Analysis of perceptions towards the rooftop photovoltaic solar system policy in Indonesia. Energy Policy, vol. 144, 2020, 111569. https://doi.org/10.1016/j.enpol.2020.111569.
  • Fathoni H.S., Boer R., Sulistiyanti: Battle over the sun: Resistance, tension, and divergence in enabling rooftop solar adoption in Indonesia. Global Environmental Change, vol. 71, 2021, 102371. https://doi.org/10.1016/j.gloenvcha.2021.102371.
  • Syahputra R., Soesanti I.: Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy Reports, vol. 7, 2021, pp. 472–490. https://doi.org/10.1016/j.egyr.2021.01.015.
  • McGee J.A., Greiner P.T.: Renewable energy injustice: The socio-environmental implications of renewable energy consumption. Energy Research & Social Science, vol. 56, 2019, 101214. https://doi.org/10.1016/j.erss.2019.05.024.
  • Maji I.K., Adamu S.: The impact of renewable energy consumption on sectoral environmental quality in Nigeria. Cleaner Environmental Systems, vol. 2, 2021, 100009. https://doi.org/10.1016/j.cesys.2021.100009.
  • Hanafi J., Riman A.: Life cycle assessment of a mini hydro power plant in Indonesia: A case study in Karai River. Procedia CIRP, vol. 29, 2015, pp. 444–449. https://doi.org/10.1016/j.procir.2015.02.160.
  • Ramos A., Rouboa A.: Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, vol. 85, 2020, 106469. https://doi.org/10.1016/j.eiar.2020.106469.
  • Utama A., Gheewala S.H.: Indonesian residential high rise buildings: A life cycle energy assessment. Energy and Buildings, vol. 41, 2009, pp. 1263–1268. https://doi.org/10.1016/j.enbuild.2009.07.025.
  • Almeida J., Degerickx J., Achten W.M.J., Muys B.: Greenhouse gas emission timing in life cycle assessment and the global warming potential of perennial energy crops. Carbon Management, vol. 6, 2015, pp. 185–195. https://doi.org/10.1080/17583004.2015.1109179.
  • Ishimoto Y., Yabuta S., Kgokong S., Motsepe M., Tominaga J., Teramoto S., Konaka T. et al.: Environmental evaluation with greenhouse gas emissions and absorption based on life cycle assessment for a Jatropha cultivation system in frostand drought-prone regions of Botswana. Biomass and Bioenergy, vol. 110 2018, pp. 33–40. https://doi.org/10.1016/j.biombioe.2017.12.026.
  • D’Imporzano G., Pilu R., Corno L., Adani F.: Arundo donax L. can substitute traditional energy crops for more efficient, environmentally-friendly production of biogas: A Life Cycle Assessment approach. Bioresource Technology, vol. 267, 2018, pp. 249–256. https://doi.org/10.1016/j.biortech.2018.07.053.
  • Davis J., Mengersen K., Bennett S., Mazerolle L.: Viewing systematic reviews and meta-analysis in social research through different lenses. SpringerPlus, vol. 3, 2014, 511. https://doi.org/10.1186/2193-1801-3-511.
  • Snyder H.: Literature review as a research methodology: An overview and guidelines. Journal of Business Research, vol. 104, 2019, pp. 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039.
  • Rabassa M., Garcia-Ribera Ruiz S., Solà I., Pardo-Hernandez H., AlonsoCoello P., Martínez García L.: Nutrition guidelines vary widely in methodological quality: an overview of reviews. Journal of Clinical Epidemiology, vol. 104, 2018, pp. 62–72. https://doi.org/10.1016/j.jclinepi.2018.08.018.
  • Osterwalder A., Pigneur Y.: Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons, Hoboken 2010.
  • Oliveira M.A.-Y., Ferreira J.J.P.: Business Model Generation: A handbook for visionaries, game changers and challengers. Publisher: John Wiley and Sons, Inc., Hoboken, New Jersey (2010). Authors: Alexander Osterwalder and Yves Pigneur [book review]. African Journal of Bussiness Management, vol. 5(7), 2011, BA71B6427744.
  • Johnson E.A.J.: Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers by Alexander Osterwalder and Yves Pigneur. Hoboken, NJ: John Wiley & Sons, 2010. 281 + iv pages. US$34.95 [book review]. Journal of Product Innovation Management, vol. 29(6), 2012, pp. 1099–1100. https://doi.org/10.1111/j.1540-5885.2012.00977_2.x.
  • Richter M.: Utilities’ business models for renewable energy: A review. Renewable and Sustainable Energy Reviews, vol. 16, 2012, pp. 2483–2493. https://doi.org/10.1016/j.rser.2012.01.072.
  • Bryant S.T., Straker K., Wrigley C.: The typologies of power: Energy utility business models in an increasingly renewable sector. Journal of Cleaner Production, vol. 195, 2018, pp. 1032–1046. https://doi.org/10.1016/j.jclepro.2018.05.233.
  • Costa V., Bonatto B., Zambroni A., Ribeiro P., Castilla M., Arango L.: Renewables with energy storage: A time-series socioeconomic model for business and welfare analysis. Journal of Energy Storage, vol. 47, 2022, 103659. https://doi.org/10.1016/j.est.2021.103659.
  • Tukker A.: Eight types of product–service system: eight ways to sustainability? Experiences from SusProNet. Bussiness Strategy Environmental, vol. 13, 2004, pp. 246–260. https://doi.org/10.1002/bse.414.
  • Von Maltitz G., Gasparatos A., Fabricius C.: The rise, fall and potential resilience benefits of Jatropha in Southern Africa. Sustainability, vol. 6, 2014, pp. 3615–3643. https://doi.org/10.3390/su6063615.
  • Portugal-Pereira J., Nakatani J., Kurisu K., Hanaki K.: Life cycle assessment of conventional and optimised Jatropha biodiesel fuels. Renewable Energy, vol. 86, 2016, pp. 585–593. https://doi.org/10.1016/j.renene.2015.08.046.
  • Farfan-Cabrera L.I., Pérez-González J., Gallardo-Hernández E.A.: Deterioration of seals of automotive fuel systems upon exposure to straight Jatropha oil and diesel. Renewable Energy, vol. 127, 2018, pp. 125–133. https://doi.org/10.1016/j.renene.2018.04.048.
  • Gabriel C.-A., Kirkwood J.: Business models for model businesses: Lessons from renewable energy entrepreneurs in developing countries. Energy Policy, vol. 95, 2016, pp. 336–349. https://doi.org/10.1016/j.enpol.2016.05.006.
  • Gabriel C.-A.: What is challenging renewable energy entrepreneurs in developing countries? Renewable and Sustainable Energy Review, vol. 64, 2016, pp. 362–371. https://doi.org/10.1016/j.rser.2016.06.025.
  • Strupeit L., Palm A.: Overcoming barriers to renewable energy diffusion: business models for customer-sited solar photovoltaics in Japan, Germany and the United States. Journal of Cleaner Production, vol. 123, 2016, pp. 124–136. https://doi.org/10.1016/j.jclepro.2015.06.120.
  • Bhatia M., Angelou N.: Beyond Connections: Energy Access Redefined: Conceptualization Report. Energy Sector Management Assistance Program, The World Bank, Washington 2015.
  • Barry M.S., Creti A.: Pay-as-you-go contracts for electricity access: Bridging the “last mile” gap? A case study in Benin. Energy Economics, vol. 90, 2020, 104843. https://doi.org/10.1016/j.eneco.2020.104843.
  • Knuckles J.: Business models for mini-grid electricity in base of the pyramid markets. Energy Sustainable Development, vol. 31, 2016, pp. 67–82. https://doi.org/10.1016/j.esd.2015.12.002.
  • Bandi V., Sahrakorpi T., Paatero J., Lahdelma R.: The paradox of mini-grid business models: A conflict between business viability and customer affordability in rural India. Energy Research & Social Science, vol. 89, 2022, 102535. https://doi.org/10.1016/j.erss.2022.102535.
  • International Energy Agency: Energy Access Outlook 2017: From Poverty to Prosperity. OECD/IEA, Paris. https://doi.org/10.1787/9789264285569-en.
  • Simelane T., Abdel-Rahman M. (eds.): Energy Transition in Africa. Africa Institute of South Africa, Pretoria 2012.
  • Davidson D.J.: Exnovating for a renewable energy transition. Nature Energy, vol. 4, 2019, pp. 254–256. https://doi.org/10.1038/s41560-019-0369-3.
  • Amankwah-Amoah J.: Solar energy in sub-Saharan Africa: The challenges and opportunities of technological leapfrogging. Thunderbird International Bussiness Review, vol. 57, 2015, pp. 15–31. https://doi.org/10.1002/tie.21677.
  • Pedersen M.B.: Deconstructing the concept of renewable energy-based mini-grids for rural electrification in East Africa. Wiley Interdisciplinary Reviews: Energy and Environment, vol. 5(5), 2016, pp. 570–587. https://doi.org/10.1002/wene.205.
  • Rasagam G., Zhu D.: Delivering on the promise of distributed renewable energy entrepreneurship in sub-Saharan Africa. Current Sustainable/Renewable Energy Reports, vol. 5, 2018, pp. 230–239. https://doi.org/10.1007/s40518-018-0120-x.
  • Rolffs P., Ockwell D., Byrne R.: Beyond technology and finance: pay-as-you-go sustainable energy access and theories of social change. Environment and Planning A, vol. 47, 2015, pp. 2609–2627. https://doi.org/10.1177/0308518X15615368
  • Setyowati A.B.: Mitigating inequality with emissions? Exploring energy justice and financing transitions to low carbon energy in Indonesia. Energy Research & Social Science, vol. 71, 2021, 101817. https://doi.org/10.1016/j.erss.2020.101817.
  • Scott I.: A business model for success: Enterprises serving the base of the pyramid with off-grid solar lighting. Renewable and Sustainable Energy Review, vol. 70, 2017, pp. 50–55. https://doi.org/10.1016/j.rser.2016.11.179.
  • Da Silva I.P., Batte G., Ondraczek J., Ronoh G., Ouma C.A.: Diffusion of solar energy technologies in rural Africa: Trends in Kenya and the LUAV experience in Uganda. [in:] 1st Africa Photovoltaic Solar Energy Conference and Exhibition Proceedings: Proceedings of the International Conference held in Durban, South Africa 27–29 March 2014, WIP Renewable Energies, 2014, pp. 106–115. https://doi.org/10.5071/1stAfricaPVSEC2014-3CK.1.2.
  • Almeshqab F., Ustun T.S.: Lessons learned from rural electrification initiatives in developing countries: Insights for technical, social, financial and public policy aspects. Renewable and Sustainable Energy Review, vol. 102, 2019, pp. 35–53. https://doi.org/10.1016/j.rser.2018.11.035.
  • López-González A., Ferrer-Martí L., Domenech B.: Sustainable rural electrification planning in developing countries: A proposal for electrification of isolated communities of Venezuela. Energy Policy, vol. 129, 2019, pp. 327–338. https://doi.org/10.1016/j.enpol.2019.02.041.
  • Kizilcec V., Parikh P.: Solar home systems: A comprehensive literature review for Sub-Saharan Africa. Energy Sustainable Development, vol. 58, 2020, pp. 78–89. https://doi.org/10.1016/j.esd.2020.07.010.
  • Ogeya M., Muhoza C., Johnson O.W.: Integrating user experiences into mini-grid business model design in rural Tanzania. Energy Sustainable Development, vol. 62, 2021, pp. 101–112. https://doi.org/10.1016/j.esd.2021.03.011.
  • Bensch G., Grimm M., Huppertz M., Langbein J., Peters J.: Are promotion programs needed to establish off-grid solar energy markets? Evidence from rural Burkina Faso. Renewable and Sustainable Energy Review, vol. 90, 2018, pp. 1060–1068. https://doi.org/10.1016/j.rser.2017.11.003.
  • Sloughter J.M., Isakson J., Mak Y.P., Schleicher A.K., Louie H., Shields K., Salmon M.: Designing a sustainable business plan for an off-grid energy kiosk in Chalokwa, Zambia. [in:] 2016 IEEE Global Humanitarian Technology Conference (GHTC 2016): 13–16 October 2016, Seattle, Washington, USA, IEEE, Piscataway 2016, pp. 401–405. https://doi.org/10.1109/GHTC.2016.7857312.
  • Trotter P.A., Brophy A.: Policy mixes for business model innovation: The case of off-grid energy for sustainable development in sub-Saharan Africa. Research Policy, vol. 51, 2022, 104528. https://doi.org/10.1016/j.respol.2022.104528.
  • Matthey-Junod A., Sandwell P., Makohliso S., Schönenberger K.: Leaving no aspect of sustainability behind: A framework for designing sustainable energy interventions applied to refugee camps. Energy Research & Social Science, vol. 90, 2022, 102636. https://doi.org/10.1016/j.erss.2022.102636.
  • Barrie J., Cruickshank H.J.: Shedding light on the last mile: A study on the diffusion of Pay As You Go Solar Home Systems in Central East Africa. Energy Policy, vol. 107, 2017, pp. 425–436. https://doi.org/10.1016/j.enpol.2017.05.016.
  • Sovacool B.K.: Success and failure in the political economy of solar electrification: Lessons from World Bank Solar Home System (SHS) projects in Sri Lanka and Indonesia. Energy Policy, vol. 123, 2018, pp. 482–493. https://doi.org/10.1016/j.enpol.2018.09.024.
  • Miller D., Hope C.: Learning to lend for off-grid solar power: policy lessons from World Bank loans to India, Indonesia, and Sri Lanka. Energy Policy, vol. 28, 2000, pp. 87–105. https://doi.org/10.1016/S0301-4215(99)00071-3.
  • Bisaga I., Puźniak-Holford N., Grealish A., Baker-Brian C., Parikh P.: Scalable off-grid energy services enabled by IoT: A case study of BBOXX SMART Solar. Energy Policy, vol. 109, 2017, pp. 199–207. https://doi.org/10.1016/j.enpol.2017.07.004.
  • Vezzoli C., Ceschin F., Diehl J.C.: Sustainable Product-Service System Design applied to Distributed Renewable Energy fostering the goal of sustainable energy for all. Journal of Cleaner Production, vol. 97, 2015, pp. 134–136. https://doi.org/10.1016/j.jclepro.2015.02.069.
  • Bacchetti E., Vezzoli C., Landoni P.: Sustainable Product-Service System (S.PSS) applied to Distributed Renewable Energy (DRE) in low and middle-income contexts: A case studies analysis. Procedia CIRP, vol. 47, 2016, pp. 442–447. https://doi.org/10.1016/j.procir.2016.03.085.
  • Bacchetti E.: A design approach with method and tools to support SMEs in designing and implementing Distributed Renewable Energy (DRE) solutions based on Sustainable Product-Service System (S.PSS). Procedia CIRP, vol. 64, 2017, pp. 229–234. https://doi.org/10.1016/j.procir.2017.03.064.
  • de Jesus Pacheco D.A., ten Caten C.S., Jung C.F., Sassanelli C., Terzi S.: Overcoming barriers towards Sustainable Product-Service Systems in Small and Medium-sized enterprises: State of the art and a novel Decision Matrix. Journal of Cleaner Production, vol. 222, 2019, pp. 903–921. https://doi.org/10.1016/j.jclepro.2019.01.152.
  • Van Acker V., Szablya S.J., Louie H., Sloughter J.M., Pirbhai A.S., Survey of energy use and costs in rural kenya for community microgrid business model development. [in:] IEEE Global Humanitarian Technology Conference, GHTC 2014, San Jose, CA, USA, October 10-13, 2014, IEEE, Piscataway 2014, pp. 166–173. https://doi.org/10.1109/GHTC.2014.6970277.
  • Mohammed Y.S., Mustafa M.W., Bashir N., Ibrahem I.S.: Existing and recommended renewable and sustainable energy development in Nigeria based on autonomous energy and microgrid technologies. Renewable and Sustainable Energy Review, vol. 75, 2017, pp. 820–838. https://doi.org/10.1016/j.rser.2016.11.062.
  • Batidzirai B., Trotter P.A., Brophy A., Stritzke S., Moyo A., Twesigye P., Puranasamriddhi A., Madhlopa A.: Towards people-private-public partnerships: An integrated community engagement model for capturing energy access needs. Energy Research & Social Science, vol. 74, 2021, 101975. https://doi.org/10.1016/j.erss.2021.101975.
  • Sovacool B.K.: Expanding renewable energy access with pro-poor public private partnerships in the developing world. Energy Strategy Review, vol. 1, 2013, pp. 181–192. https://doi.org/10.1016/j.esr.2012.11.003.
  • Everard M., Longhurst J., Pontin J., Stephenson W., Brooks J.: Developed-developing world partnerships for sustainable development (2): An illustrative case for a payments for ecosystem services (PES) approach. Ecosystem Services, vol. 24, 2017, pp. 253–260. https://doi.org/10.1016/j.ecoser.2016.09.019.
  • Groenewoudt A.C., Romijn H.A., Alkemade F.: From fake solar to full service: An empirical analysis of the solar home systems market in Uganda. Energy Sustainable Development, vol. 58, 2020, pp. 100–111. https://doi.org/10.1016/j.esd.2020.07.004.
  • Friebe C.A., von Flotow P., Täube F.A.: Exploring the link between products and services in low-income markets – Evidence from solar home systems. Energy Policy, vol. 52, 2013, pp. 760–769. https://doi.org/10.1016/j.enpol.2012.10.038.
  • Thomas P.J.M., Williamson S.J., Harper P.W.: The diffusion of solar home systems in Rwandan refugee camps. Energy Sustainable Development, vol. 63, 2021, pp. 119–132. https://doi.org/10.1016/j.esd.2021.05.003.
  • Ellegård A., Arvidson A., Nordström M., Kalumiana O.S., Mwanza C.: Rural people pay for solar: experiences from the Zambia PV-ESCO project. Renewable Energy, vol. 29, 2004, pp. 1251–1263. https://doi.org/10.1016/j.renene.2003.11.019.
  • Fathoni H.S., Setyowati A.B.: Energy justice for whom? Territorial (re)production and everyday state-making in electrifying rural Indonesia. Geoforum, vol. 135, 2022, pp. 49–60. https://doi.org/10.1016/j.geoforum.2022.07.012.
  • Lukuyu J., Fetter R., Krishnapriya P.P., Williams N., Taneja J.: Building the supply of demand: Experiments in mini-grid demand stimulation. Development Engineering, vol. 6, 2021, 100058. https://doi.org/10.1016/j.deveng.2020.100058.
  • Kyriakarakos G., Papadakis G.: Multispecies swarm electrification for rural areas of the developing world. Applied Sciences, vol. 9, 2019, 3992. https://doi.org/10.3390/app9193992.
  • Huber M., Namockel N., Rezgui R., Küppers M., Heger H.J.: Electrification seeds – A flexible approach for decentralized electricity supply in developing countries. Energy Sustainable Development, vol. 62, 2021, pp. 176–185. https://doi.org/10.1016/j.esd.2021.04.001.
  • Venkatachary S.K., Prasad J., Samikannu R: Challenges, opportunities and profitability in virtual power plant business models in Sub Saharan Africa-Botswana. International Journal of Energy Economics and Policy, vol. 7(4), 2017. https://www.econjournals.com/index.php/ijeep/article/view/4973.
  • Mandelli S., Brivio C., Leonardi M., Colombo E., Molinas M., Park E., Merlo M.: The role of electrical energy storage in sub-Saharan Africa. Journal of Energy Storage, vol. 8, 2016, pp. 287–299. https://doi.org/10.1016/j.est.2015.11.006.
  • Ausrød V.L., Sinha V., Widding Ø.: Business model design at the base of the pyramid. Journal of Cleaner Production, vol. 162, 2017, pp. 982–996. https://doi.org/10.1016/j.jclepro.2017.06.014.
  • Campbell D., Danilovic M., Halila F., Hoveskog M.: The clash of business models in emerging economies: The case of wind energy industry in Africa. International Journal of Management Science and Information Technology, 2013, pp. 10–51. http://hdl.handle.net/10419/97882.
  • Kennedy S.F.: Indonesia’s energy transition and its contradictions: emerging geographies of energy and finance. Energy Research & Social Science, vol. 41, 2018, pp. 230–237. https://doi.org/10.1016/j.erss.2018.04.023.
  • Moran R.T., Harris P.R., Moran S.V: 12 – Doing Business with Asians and Australians: Australia, China, India, Indonesia, Japan, Malaysia, Singapore, New Zealand, Pakistan, Philippines, South Korea, Taiwan, Thailand, Vietnam. [in:] Moran R.T., Harris P.R., Moran S.V. (eds.), Managing Cultural Differences, 8th ed., Routledge, London 2011, pp. 323–390. https://doi.org/10.1016/B978-1-85617-923-2.00012-4.
  • Budzianowski W.M., Nantongo I., Bamutura C., Rwema M., Lyambai M., Abimana C., Akumu E.O. et al.: Business models and innovativeness of potential renewable energy projects in Africa. Renewable Energy, vol. 123, 2018, pp. 162–190. https://doi.org/10.1016/j.renene.2018.02.039.
  • Raihan A., Muhtasim D.A., Pavel M.I., Faruk O., Rahman M.: An econometric analysis of the potential emission reduction components in Indonesia. Cleaner Production Letters, vol. 3, 2022, 100008. https://doi.org/10.1016/j.clpl.2022.100008.
  • Maulidia M., Dargusch P., Ashworth P., Ardiansyah F.: Rethinking renewabl energy targets and electricity sector reform in Indonesia: A private sector perspective. Renewable and Sustainable Energy Review, vol. 101, 2019, pp. 231–247. https://doi.org/10.1016/j.rser.2018.11.005.
  • Umoh K., Lemon M.: Drivers for and barriers to the take up of floating offshore wind technology: a comparison of Scotland and South Africa. Energies, vol. 13(21), 2020, 5618. https://doi.org/10.3390/en13215618.
  • Sewchurran S., Davidson I.E.: Why solar PV is such a lucrative option for South African municipal customers. [in:] 2021 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA), IEEE, Piscataway 2021, pp. 1–7. https://doi.org/10.1109/SAUPEC/RobMech/PRASA52254.2021.9377024.
  • Hamid R.G., Blanchard R.E.: An assessment of biogas as a domestic energy source in rural Kenya: Developing a sustainable business model. Renewable Energy, vol. 121, 2018, pp. 368–376. https://doi.org/10.1016/j.renene.2018.01.032.
  • Jagger P., Das I.: Implementation and scale-up of a biomass pellet and improved cookstove enterprise in Rwanda. Energy Sustainable Development, vol. 46, 2018, pp. 32–41. https://doi.org/10.1016/j.esd.2018.06.005.
  • Alstone P., Gershenson D., Kammen D.M.: Decentralized energy systems for clean electricity access. Nature Climate Change, vol. 5, 2015, pp. 305–314. https://doi.org/10.1038/nclimate2512.
  • Pueyo A., Carreras M., Ngoo G.: Exploring the linkages between energy, gender, and enterprise: Evidence from Tanzania. World Development, vol. 128, 2020, 104840. https://doi.org/10.1016/j.worlddev.2019.104840.
  • Kurniawan R., Managi S.: Coal consumption, urbanization, and trade openness linkage in Indonesia. Energy Policy, vol. 121, 2018, pp. 576–583. https://doi.org/10.1016/j.enpol.2018.07.023.
  • Deendarlianto, Widyaparaga A., Widodo T., Handika I., Chandra Setiawan I., Lindasista A.: Modelling of Indonesian road transport energy sector in order to fulfill the national energy and oil reduction targets. Renewable Energy, vol. 146, 2020, pp. 504–518. https://doi.org/10.1016/j.renene.2019.06.169.
  • Bryant S.T., Romijn H.A.: Not quite the end for Jatropha? Assessing the financial viability of biodiesel production from Jatropha in Tanzania. Energy for Sustainable Development, vol. 23, 2014, pp. 212–219. https://doi.org/10.1016/j.esd.2014.09.006.
  • Buchholz T., Da Silva I., Furtado J.: Power from wood gasifiers in Uganda: a 250 kW and 10 kW case study. Energy – Proceedings of the Institution of Civil Engineers, vol. 165(4), 2012, pp. 181–196. https://doi.org/10.1680/ener.12.00005.
  • Mahama A.: 2012 international year for sustainable energy for all: African frontrunnership in rural electrification. Energy Policy, vol. 48, 2012, pp. 76–82. https://doi.org/10.1016/j.enpol.2012.04.046.
  • Njogu M., Kimathi P., DaSilva I.: Community-developer business model promoting social energy enterprises (Case study of Mutunguru 7.8 MW community driven small Hydro Power Project). [in:] IEEE AFRICON 2017, Cape Town, South Africa, September 18–20, 2017, IEEE, Piscataway 2017, pp. 1143–1148. https://doi.org/10.1109/AFRCON.2017.8095643.
  • Koirala B.P., Koliou E., Friege J., Hakvoort R.A., Herder P.M.: Energetic communities for community energy: A review of key issues and trends shaping integrated community energy systems. Renewable and Sustainable Energy Review, vol. 56, 2016, pp. 722–744. https://doi.org/10.1016/j.rser.2015.11.080.
  • Troost A.P., Musango J.K., Brent A.C.: Strategic investment to increase access to finance among mini-grid escos: Perspectives from sub-saharan africa. [in:] ICGEA 2018: 2nd International Conference on Green Energy and Applications: proceedings: Singapore, March 24-26, 2018, IEEE, Piscataway 2018, pp. 29–37. https://doi.org/10.1109/ICGEA.2018.8356268.
  • Brüntrup M., Schwarz F., Absmayr T., Dylla J., Eckhard F., Remke K., Sternisko K.: Nucleus-outgrower schemes as an alternative to traditional smallholder agriculture in Tanzania – strengths, weaknesses and policy requirements. Food Security, vol. 10, 2018, pp. 807–826. https://doi.org/10.1007/s12571-018-0797-0.
  • von Maltitz G.P., Setzkorn K.A.: A typology of Southern African biofuel feedstock production projects. Biomass and Bioenergy, vol. 59, 2013, pp. 33–49. https://doi.org/10.1016/j.biombioe.2012.11.024.
  • German L., Schoneveld G.C., Gumbo D.: The local social and environmental impacts of smallholder-based biofuel investments in Zambia. Ecology and Society, vol. 16(4), 2011. https://www.jstor.org/stable/26268965.
  • Malhotra A., Schmidt T.S., Haelg L., Waissbein O.: Scaling up finance for off-grid renewable energy: The role of aggregation and spatial diversification in derisking investments in mini-grids for rural electrification in India. Energy Policy, vol. 108, 2017, pp. 657–672. https://doi.org/10.1016/j.enpol.2017.06.037.
  • Glemarec Y.: Financing off-grid sustainable energy access for the poor. Energy Policy, vol. 47, 2012, pp. 87–93. https://doi.org/10.1016/j.enpol.2012.03.032.
  • Soutar I., Devine-Wright P., Rohse M., Walker C., Gooding L., DevineWright H., Kay I.: Constructing practices of engagement with users and communities: Comparing emergent state-led smart local energy systems. Energy Policy, vol. 171, 2022, 113279. https://doi.org/10.1016/j.enpol.2022.113279.
  • McGovern G.: Capturing community value in civic energy business model design. Energy Policy, vol. 156, 2021, 112468. https://doi.org/10.1016/j.enpol.2021.112468.
  • Mukoro V., Sharmina M., Gallego-Schmid A.: A review of business models for access to affordable and clean energy in Africa: Do they deliver social, economic, and environmental value? Energy Research & Social Science, vol. 88, 2022, 102530. https://doi.org/10.1016/j.erss.2022.102530.
  • Sumarsono N., Wahyuni S., Sudhartio L.: A paradigm shift of energy sources: Critical review on competitive dynamics of solar PV industry in Indonesia. Renewable Energy Focus, vol. 41, 2022, pp. 236–245. https://doi.org/10.1016/j.ref.2021.12.001.
  • Burke P.J., Widnyana J., Anjum Z., Aisbett E., Resosudarmo B., Baldwin K.G.H.: Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy, vol. 132, 2019, pp. 1216–1228. https://doi.org/10.1016/j.enpol.2019.05.055.
  • Santika W.G., Urmee T., Simsek Y., Bahri P.A., Anisuzzaman M.: An assessment of energy policy impacts on achieving Sustainable Development Goal 7 in Indonesia. Energy for Sustainable Development, vol. 59, 2020, pp. 33–48. https://doi.org/10.1016/j.esd.2020.08.011.
  • Rhofita E.I., Rachmat R., Meyer M., Montastruc L.: Mapping analysis of biomass residue valorization as the future green energy generation in Indonesia. Journal of Cleaner Production, vol. 354, 2022, 131667. https://doi.org/10.1016/j.jclepro.2022.131667.
  • Castro Gonzáles N.F.: International experiences with the cultivation of Jatropha curcas for biodiesel production. Energy, vol. 112, 2016, pp. 1245–1258. https://doi.org/10.1016/j.energy.2016.06.073.
  • Gasparatos A., Romeu-Dalmau C., von Maltitz G.P., Johnson F.X., Shackleton C., Jarzebski M.P., Jumbe C. et al.: Mechanisms and indicators for assessing the impact of biofuel feedstock production on ecosystem services. Biomass and Bioenergy, vol. 114, 2018, pp. 157–173. https://doi.org/10.1016/j.biombioe.2018.01.024.
  • Asikin-Mijan N., Derawi D., Salih N., Salimon J., Alsultan G.A., Mastuli M.S., Ravindran M.X.Y.: 8 – Vegetable oil-based feedstocks for biofuel production: Physicochemical properties and chemical compositions. [in:] Nanda S., Dai-Viet N. Vo (eds.), Innovations in Thermochemical Technologies for Biofuel Processing, Elsevier, 2022, pp. 197–219. https://doi.org/10.1016/B978-0-323-85586-0.00002-0.
  • Hultman N.E., Sulle E.B., Ramig C.W., Sykora-Bodie S.: Biofuels investments in Tanzania: Policy options for sustainable business models. The Journal of Environment & Development, vol. 21, 2012, pp. 339–361. https://doi.org/10.1177/1070496511435665.
  • Papilo P., Marimin M., Hambali E., Machfud M., Yani M., Asrol M., Evanila E. et al.: Palm oil-based bioenergy sustainability and policy in Indonesia and Malaysia: A systematic review and future agendas. Heliyon, vol. 8, 2022, e10919. https://doi.org/10.1016/j.heliyon.2022.e10919.
  • Mukherjee I., Sovacool B.K.: Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand. Renewable and Sustainable Energy Review, vol. 37, 2014, pp. 1–12. https://doi.org/10.1016/j.rser.2014.05.001.
  • Apriani E., Kim Y.-S., Fisher L.A., Baral H.: Non-state certification of smallholders for sustainable palm oil in Sumatra, Indonesia. Land Use Policy, vol. 99, 2020, 105112. https://doi.org/10.1016/j.landusepol.2020.105112.
  • Euler M., Krishna V., Schwarze S., Siregar H., Qaim M.: Oil palm adoption, household welfare, and nutrition among smallholder farmers in Indonesia. World Development, vol. 93, 2017, pp. 219–235. https://doi.org/10.1016/j.worlddev.2016.12.019.
  • Roos A., Mutta D., Larwanou M., Wekesa C., Kowero G.: Operations and improvement needs in the informal charcoal sector: a participatory value stream analysis. International Forestry Review, vol. 23(3), 2021, pp. 351–364. https://doi.org/10.1505/146554821833992802.
  • Nigussie Z., Tsunekawa A., Haregeweyn N., Tsubo M., Adgo E., Ayalew Z., Abele S.: The impacts of Acacia decurrens plantations on livelihoods in rural Ethiopia. Land Use Policy, vol. 100, 2021, 104928. https://doi.org/10.1016/j.landusepol.2020.104928.
  • Williams L.J., van Wensveen M., Dahlanuddin, Grünbühel C.M., Puspadi K.: Adoption as adaptation: Household decision making and changing rural livelihoods in Lombok, Indonesia. Journal of Rural Studies, vol. 89, 2022, pp. 328–336. https://doi.org/10.1016/j.jrurstud.2021.12.006.
  • Oliphant E., Simon A.C.: The cost of sustainable palm oil: Should an Indonesian smallholder pursue RSPO-certification? World Development Perspectives, vol. 26, 2022, 100432. https://doi.org/10.1016/j.wdp.2022.100432.
  • REN21: Renewables 2022 Global Status Report. https://www.ren21.net/gsr-2022/[access: 7.07.2023].
  • Hong T., Yoo H., Kim J., Koo C., Jeong K., Lee M., Ji C., Jeong J.: A model for determining the optimal lease payment in the solar lease business for residences and third-party companies – With focus on the region and on multi-family housing complexes. Renewable and Sustainable Energy Review, vol. 82(1), 2018, pp. 824–836. https://doi.org/10.1016/j.rser.2017.09.068.
  • Johnson O.W., Gerber V., Muhoza C.: Gender, culture and energy transitions in rural Africa. Energy Research & Social Science, vol. 49, 2019, pp. 169–179. https://doi.org/10.1016/j.erss.2018.11.004.
  • Sarrica M., Richter M., Thomas S., Graham I., Mazzara B.M.: Social approaches to energy transition cases in rural Italy, Indonesia and Australia: Iterative methodologies and participatory epistemologies. Energy Research & Social Science, vol. 45, 2018, pp. 287–296. https://doi.org/10.1016/j.erss.2018.07.001.
  • Lee S.M., Kim Y.-S., Jaung W., Latifah S., Afifi M., Fisher L.A.: Forests, fuelwood and livelihoods – energy transition patterns in eastern Indonesia. Energy Policy, vol. 85, 2015, pp. 61–70. https://doi.org/10.1016/j.enpol.2015.04.030.
  • Horbach J., Rammer C., Rennings K.: Determinants of eco-innovations by type of environmental impact – The role of regulatory push/pull, technology push and market pull. Ecological Economics, vol. 78, 2012, pp. 112–122. https://doi.org/10.1016/j.ecolecon.2012.04.005.
  • Costantini V., Crespi F., Martini C., Pennacchio L.: Demand-pull and technologypush public support for eco-innovation: The case of the biofuels sector. Research Policy, vol. 44(3), 2015, pp. 577–595. https://doi.org/10.1016/j.respol.2014.12.011.
  • Zsiborács H., Baranyai N.H., Vincze A., Zentkó L., Birkner Z., Máté K., Pintér G.: Intermittent renewable energy sources: The role of energy storage in the European power system of 2040. Electronics, vol. 8(7), 2019, 729. https://doi.org/10.3390/electronics8070729.
  • Sherrington C., Bartley J., Moran D.: Farm-level constraints on the domestic supply of perennial energy crops in the UK. Energy Policy, vol. 36(7), 2008, pp. 2504–2512. https://doi.org/10.1016/j.enpol.2008.03.004.
  • Adams P.W.R., Lindegaard K.: A critical appraisal of the effectiveness of UK perennial energy crops policy since 1990. Renewable and Sustainable Energy Review, vol. 55, 2016, pp. 188–202. https://doi.org/10.1016/j.rser.2015.10.126.
  • Králík T., Knápek J., Vávrová K., Outrata D., Romportl D., Horák M., Jandera J.: Ecosystem services and economic competitiveness of perennial energy crops in the modelling of biomass potential – A case study of the Czech Republic. Renewable and Sustainable Energy Review, vol. 173, 2023, 113120. https://doi.org/10.1016/j.rser.2022.113120.
  • Aberilla J.M., Gallego-Schmid A., Stamford L., Azapagic A.: Design and environmental sustainability assessment of small-scale off-grid energy systems for remote rural communities. Applied Energy, vol. 258, 2020, 114004. https://doi.org/10.1016/j.apenergy.2019.114004.
  • Pandyaswargo A.H., Wibowo A.D., Onoda H.: Socio-techno-economic assessment to design an appropriate renewable energy system for remote agricultural communities in developing countries. Sustainable Production and Consumption, vol. 31, 2022, pp. 492–511. https://doi.org/10.1016/j.spc.2022.03.009.
  • Gaete-Morales C., Gallego-Schmid A., Stamford L., Azapagic A.: Assessing the environmental sustainability of electricity generation in Chile. Science of the Total Environment, vol. 636, 2018, pp. 1155–1170. https://doi.org/10.1016/j.scitotenv.2018.04.346.
  • Bilich A., Langham K., Geyer R., Goyal L., Hansen J., Krishnan A., Bergesen J., Sinha P.: Life cycle assessment of solar photovoltaic microgrid systems in off-grid communities. Environmental Science & Technology, vol. 51(2), 2017, pp. 1043–1052. https://doi.org/10.1021/acs.est.6b05455.
  • Papageorgiou A., Ashok A., Hashemi Farzad T., Sundberg C.: Climate change impact of integrating a solar microgrid system into the Swedish electricity grid. Applied Energy, vol. 268, 2020, 114981. https://doi.org/10.1016/j.apenergy.2020.114981.
  • Akinyele D.O., Rayudu R.K.: Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries. Energy, vol. 109, 2016, pp. 160–179. https://doi.org/10.1016/j.energy.2016.04.061.
  • Ito M., Lespinats S., Merten J., Malbranche P., Kurokawa K.: Life cycle assessment and cost analysis of very large-scale PV systems and suitable locations in the world. Progress in Photovoltaics: Research and Applications, vol. 24(2), 2016, pp. 159–174. https://doi.org/10.1002/pip.2650.
  • Sim M., Suh D.: A heuristic solution and multi-objective optimization model for life-cycle cost analysis of solar PV/GSHP system: A case study of campus residential building in Korea. Sustainable Energy Technology Assessments, vol. 47, 2021, 101490. https://doi.org/10.1016/j.seta.2021.101490.
  • Luerssen C., Gandhi O., Reindl T., Sekhar C., Cheong D.: Life cycle cost analysis (LCCA) of PV-powered cooling systems with thermal energy and battery storage for off-grid applications. Applied Energy, vol. 273, 2020, 115145. https://doi.org/10.1016/j.apenergy.2020.115145.
  • Aspara J., Hietanen J., Tikkanen H.: Business model innovation vs replication: financial performance implications of strategic emphases. Journal of Strategic Marketing, vol. 18, 2010, pp. 39–56. https://doi.org/10.1080/09652540903511290.
  • Amit R., Zott C.: Creating value through business model innovation. MIT Sloan Management Review, vol. 53, 2012. https://sloanreview.mit.edu/article/creating-value-through-business-model-innovation/ [access: 7.07.2023].
  • Hiteva R., Foxon T.J.: Beware the value gap: Creating value for users and for the system through innovation in digital energy services business models. Technological Forecasting and Social Change, vol. 166, 2021, 120525. https://doi.org/10.1016/j.techfore.2020.120525.
  • Haftor D.M., Climent Costa R.: Five dimensions of business model innovation: A multi-case exploration of industrial incumbent firm’s business model transformations. Journal of Business Research, vol. 154, 2023, 113352. https://doi.org/10.1016/j.jbusres.2022.113352.
  • Böttcher T.P., Weking J., Hein A., Böhm M., Krcmar H.: Pathways to digital business models: The connection of sensing and seizing in business model innovation. The Journal of Strategic Information Systems, vol. 31, 2022, 101742. https://doi.org/10.1016/j.jsis.2022.101742.
  • Heyes G., Sharmina M., Mendoza J.M.F., Gallego-Schmid A., Azapagic A.: Developing and implementing circular economy business models in service-oriented technology companies. Journal of Cleaner Production, vol. 177, 2018, pp. 621–632. https://doi.org/10.1016/j.jclepro.2017.12.168.
  • Pollard J., Osmani M., Grubnic S., Díaz A.I., Grobe K., Kaba A., Ünlüer Ö., Panchal R.: Implementing a circular economy business model canvas in the electrical and electronic manufacturing sector: A case study approach. Sustainable Production and Consumption, vol. 36, 2022, pp. 17–31. https://doi.org/10.1016/j.spc.2022.12.009.
  • Pieroni M.P.P., McAloone T.C., Pigosso D.C.A.: Developing a process model for circular economy business model innovation within manufacturing companies. Journal of Cleaner Production, vol. 299, 2021, 126785. https://doi.org/10.1016/j.jclepro.2021.126785.
  • Wahyono Y., Hadiyanto H., Gheewala S.H., Budihardjo M.A., Adiansyah J.S.: Evaluating the environmental impacts of the multi-feedstock biodiesel production process in Indonesia using life cycle assessment (LCA). Energy Conversion and Management, vol. 266, 2022, 115832. https://doi.org/10.1016/j.enconman.2022.115832.
  • Mahmud M.A.P., Huda N., Farjana S.H., Lang C.: Life-cycle impact assessment of renewable electricity generation systems in the United States. Renewable Energy, vol. 151, 2020, pp. 1028–1045. https://doi.org/10.1016/j.renene.2019.11.090.
  • Xu H., Lee U., Wang M.: Life-cycle energy use and greenhouse gas emissions of palm fatty acid distillate derived renewable diesel. Renewable and Sustainable Energy Review, vol. 134, 2020, 110144. https://doi.org/10.1016/j.rser.2020.110144.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-423cd156-6f2d-4367-8bcb-e24484441d17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.