PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical benchmark for road bridge damage detection from passing vehicles responses applied to four data-driven methods

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drive-by bridge monitoring utilizes measured responses from passing vehicles to perform damage detection of bridge, a methodology challenged by multiple factors and operational conditions. Recently, data-driven methods have been used to improve the accuracy of drive-by monitoring. This thriving research field requires (but lacks) publicly available datasets to improve and validate its monitoring and damage detection capabilities. To foster data-driven drive-by bridge damage assessment methods, this document presents an openly available dataset consisting of numerically simulated vehicle responses crossing a range of bridge spans with various damage conditions. The dataset includes results for different monitoring scenarios, road profile conditions, vehicle models, vehicle mechanical properties and speeds. The intention is to provide a useful resource to the research community that serves as a reference set of results for testing and benchmarking new developments in the field. In addition, four recently published data-driven drive-by methods have been tested using the same dataset.
Rocznik
Strony
art. no. e190, 2024
Opis fizyczny
Bibliogr. 35 poz., rys., wykr.
Twórcy
  • Department of Structural Engineering, Norwegian University of Science and Technology NTNU, Trondheim, Norway
  • Department of Structural Engineering, Norwegian University of Science and Technology NTNU, Trondheim, Norway
  • Structural Dynamics and Assessment Laboratory, School of Civil Engineering, University College Dublin, Dublin, Ireland
  • Structural Dynamics and Assessment Laboratory, School of Civil Engineering, University College Dublin, Dublin, Ireland
  • Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, Australia
  • Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, University of New South Wales (UNSW), Sydney, Australia
  • Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
  • Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
autor
  • Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA
Bibliografia
  • 1. Gkoumas K, Gkoktsi K, Bono F, Galassi MC, Tirelli D. The wayforward for indirect structural health monitoring (iSHM) using connected and automated vehicles in Europe. Infrastructures.2021;6:43. https://doi.org/10.3390/infrastructures6030043.
  • 2. The International Transport Forum (2023) Preparing infrastructure for automated vehicles. Report, ITF Research Report, OECD Publishing, Paris.
  • 3. Singh P, Mittal S, Sadhu A. Recent advancements and future trends in indirect bridge health monitoring. Pract Period Struct Des Constr. 2023;28:03122008. https://doi.org/10.1061/PPSCFX.SCENG-1259.
  • 4. Malekjafarian A, Corbally R, Gong W. A review of mobile sensing of bridges using moving vehicles: progress to date, challenges and future trends. Structures. 2022;44:1466–89. https://doi.org/10.1016/j.istruc.2022.08.075.
  • 5. Wang ZL, Yang JP, Shi K, Xu H, Qiu FQ, Yang YB. Recent advances in researches on vehicle scanning method for bridges. Int J Struct Stab Dyn. 2022. https://doi.org/10.1142/S0219455422300051.
  • 6. Yang YB, Wang ZL, Shi K, Xu H, Wu YT. State-of-the-art of the vehicle-based methods for detecting the various properties of highway bridges and railway tracks. Int J Struct Stab Dyn.2020;20:13. https://doi.org/10.1142/S0219455420410047.
  • 7. Shokravi H, Shokravi H, Bakhary N, Heidarrezaei M, Koloor SSR, Petru M. Vehicle-assisted techniques for health monitoring of bridges. Sensors. 2020;20:3460. https://doi.org/10.3390/s20123460.
  • 8. Yang YB, Yang JP. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int JStruct Stab Dyn. 2018;18:1850025. https://doi.org/10.1142/S0219455418500256.
  • 9. Mei Q, Gül M, Shirzad-Ghaleroudkhani N. Towards smart cities:crowd sensing-based monitoring of transportation infrastructure using in-traffic vehicles. J Civ Struct Heal Monit. 2020;10:653–65. https://doi.org/10.1007/s13349-020-00411-6.
  • 10. US Department of Transportation (2020) Identifying real-world transportation applications using artificial intelligence (AI). Real-world AI scenarios in transportation for possible deployment. Report no. FHWA-JPO-20–810, US.
  • 11. International Transport Forum (2021) Data-driven transport infra-structure maintenance. Report, International Transport ForumPolicy Papers, No. 95, OECD Publishing, Paris.
  • 12. National cooperative highway research program (2020) Strategic issues facing transportation, vol 7: preservation, maintenance, and renewal of highway infrastructure. Report, Transportation research board, US, Washington.
  • 13. World road association (2023) Use of big data for road conditio monitoring. Report, PIARC, France, Paris.
  • 14. Corbally R, Malekjafarian A. A data-driven approach for drive-by damage detection in bridges considering the influence of temperature change. Eng Struct. 2022. https://doi.org/10.1016/j.engstruct.2021.113783.
  • 15. Sarwar MZ, Cantero D. Deep autoencoder architecture for bridge damage assessment using responses from several vehicles. EngStruct. 2021;246:113064. https:// doi. org/ 10. 1016/j. engst ruct.2021.113064.
  • 16. Cheema P, Alamdari MM, Chang K, Kim CW, Sugiyama M. Adrive-by bridge inspection framework using non-parametric clusters over projected data manifolds. Mech Syst Signal Process.2022;180:109401.
  • 17. Liu J, Xu S, Berge M, Noh HY. HierMUD: hierarchical multitask unsupervised domain adaptation between bridges for drive-by damage diagnosis. Struct Health Monit. 2023;22:1941–68.
  • 18. Cantero D. NuBe-DBBM: numerical benchmark for drive-bybridge monitoring methods. 2023. Zenodo Repos. https://doi.org/10.5281/zenodo.7741092.
  • 19. Cantero D. VBI-2D-road vehicle-bridge interaction simulation tool and verification framework for Matlab. SofwareX.2024;26:101725. https://doi.org/10.1016/j.softx.2024.101725.
  • 20. Li Y (2006) Factors affecting the dynamic interaction of Bridges and vehicle loads. Dissertation, University College Dublin.
  • 21. ISO 8608 (1995) Mechanical vibration-road surface profiles-reporting of measure data.
  • 22. Harris NK, Obrien EJ, González A. Reduction of bridge dynamic amplification through adjustment of vehicle suspension damping. J Sound Vib. 2007;302(3):471–85. https://doi.org/10.1016/j.jsv.2006.11.020.
  • 23. Corbally R, Malekjafarian A. Examining changes in bridge frequency due to damage using the contact-point response of a passing vehicle. J Struct Integr Maint. 2021;6:148–58. https://doi.org/10.1080/24705314.2021.1906088.
  • 24. Sarwar MZ, Cantero D. Vehicle assisted bridge damage assessment using probabilistic deep learning. Measurement. 2023;206:112216. https://doi.org/10.1016/j.measurement.2022.112216.
  • 25. Percival DB, Walden AT. Wavelet methods for time series analysis. Cambridge: Cambridge University Press; 2000.
  • 26. McInnes L, Healy J, Melville J (2018) Umap: Uniform manifold approximation and projection for dimension reduction. Ar Xiv preprint: 1802.03426. https://doi.org/10.48550/arXiv.1802.03426.
  • 27. McInnes L, Healy J, Astels S. Hdbscan: hierarchical density based clustering. J Open-Source Softw. 2017;2:205. https://doi.org/10.21105/joss.00205.
  • 28. Liu RY, Singh K. Using iid bootstrap inference for general non-ii dmodels. J Stat Plan Inference. 1995;43:67–75. https://doi.org/10.1016/0378-3758(94)00008-J.
  • 29. Liu J, Bergés M, Bielak J, Garret JH, Kovacevic J, Noh HY (2018)A damage localization and quantification algorithm for in direct structural health monitoring of bridges using multi-task learning.In: 45th Annual review of progress in quantitative nondestructive evaluation, Vermont, USA, 15–19 July, paper no. 090003. https://doi.org/10.1063/1.5099821.
  • 30. Liu J, Chen B, Chen S, Berges M, Bielak J, Noh HY (2020) Damage-sensitive and domain-invariant feature extraction for vehicle-vibration-based bridge health monitoring. In: IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, Spain, 4–8 May, pp.3007–3011. https:// doi.org/10.1109/ICASSP40776.2020.9053450.
  • 31. McKinley S, Levine M. Cubic spline interpolation. Eureka: College of the Redwoods; 1998.
  • 32. Efron B. Bootstrap methods: another look at the jack knife. AnnStat. 1979;7:1–26. https://doi.org/10.1214/aos/1176344552.
  • 33. Zhu XQ, Law SS. Moving loads identification through regularization. J Eng Mech. 2002;128:989–1000.
  • 34. Moore RC, deNero J (2011) L1 and L2 regularization for multiclass hinge loss models. In: Symposium on Machine Learning in Speech and Natural Language Processing.
  • 35. Maaten L, Hinton G. Visualizing data using t-SNE. J Mach LearnRes. 2008;9:2579–605.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-423b763a-7ebe-4fb4-846f-f8356f1f167d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.