PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on closed-loop utilization of engineering waste mud in engineering sites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The large amount of waste mud generated during construction projects makes it difficult to implement closed-loop on-site treatment, resulting in the inability to achieve zero emissions, which not only wastes land resources but also pollutes the environment. This article first studied the flocculation effect and mechanism of two flocculants. Then, the treated sediment was used to prepare fluidized solidified soil, and the effect of flocculants in the sediment on the performance of fluidized solidified soil was studied. Finally, this technology of flocculation and re-solidification was applied in engineering. The results showed that the composite effect of adding PAC flocculant first and then APAM flocculant in the mud had the best mud-water separation effect. The soil was combined with the flocculants to prepare fluidized solidified soil that can effectively improve the strength and water stability of the solidified soil. Through engineering applications, it has been proven that closed-loop utilization of engineering waste mud can be achieved on-site. Therefore, this work provides a new method for achieving zero emissions through closed-loop utilization of engineering waste mud on-site and innovative experience for the construction of “waste-free cities”.
Wydawca
Rocznik
Strony
99--110
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • School of Civil Engineering, Southwest Jiaotong University Chengdu, China
  • China Construction Eighth Engineering Division Corp., Ltd. Southwest Branch.Chengdu, China
autor
  • School of Civil Engineering, Southwest Jiaotong University Chengdu, China
Bibliografia
  • [1] Wang B, Wei R, Xiao JZ, Cai H, Feng Y, Wu SF, et al. Curing soft clay to improve its strength with composite microbially induced carbonate precipitation (micp) and coal fly ash. Advan in Civ Eng Mater. 2022;11(1):155– 174. doi: 10.1520/ACEM20210065
  • [2] Fang K, Zhang ZM, Liu XW, Luo JC. Pollution of construction waste slurry and prevention measures. Chin J of Geotech Eng. 2011;33(S2):238– 241. Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL-YTGC2011S2046.htm. Chinese.
  • [3] Sheehan C, Harrington J. Harrington Management of dredge material in the republic of Ireland–A review. Waste Management. 2012;32(5):1031–1044. doi: 10.1016/j.wasman.2011.11.014
  • [4] He YH, Liu SY, Shen GQ, Pan MZ, Cai YY, Yu J. Treatment of engineering waste slurries by microbially induced struvite precipitation mechanisms. Front Bioeng Biotechnol. 2023 Jan 20;11:1109265. doi: 10.3389/fbioe.2023.1109265
  • [5] Pu H, Khoteja D, Zhou Y, Pan Y. Dewatering of dredged slurry by horizontal drain assisted with vacuum and flocculation. Geosynth Int. 2022;29(3):299–311. doi: 10.1680/jgein:21.00035
  • [6] Liu FY, Wu Wq, Fu Ht, Wang J, Hai J, Cai YQ, et al. Application of flocculation combined with vacuum preloading to reduce river-dredged sludge. Mar Georesources & Geotechnol. 2020;38(2):164–173. doi: 10.1080/1064119X.2018.1564092
  • [7] Wu SL, Zhu YY, Zhu W, Shu S, Cui Y. A study on the differences in the flocculation of dredged slurries and the influencing mechanisms. Water Sci and Technol. 2019;80(9):1751–1762. doi: 10.2166/wst.201 9.428
  • [8] Peng GJ, Huang X, Zhou L, Zhou GX, Zhou H. Solid-liquid two-phase flow and wear analysis in a large-scale centrifugal slurry pump. Eng Fail Anal. 2020;114:104602. doi: 10.1016/j.engfailanal. 2020.104602
  • [9] Min FL, Du JR, Zhang N, Chen XG, Lv HJ, Liu LC, et al. Experimental study on property change of slurry and filter cake of slurry shield under seawater intrusion. Tunn and Undergr Space Technol. 2019;88:290–299. doi: 10.1016/j.tust.2019.03.006
  • [10] Ding ZY, Liu T, Zang Y, Su XT, Zheng JG. The curing strength properties of highly moist waste mud from slurry shield tunnel construction. Appl Sci. 2022;12(8):37–62. doi: 10.3390/app12083762
  • [11] Huang XQ, Xie XQ, Liu Z, Zhao XR, Wang ZQ, Wang RT, et al. Fabrication and Analysis of an Effective Composite Desiccant for the Rapid Dehydration of Shield Waste Slurry. KSCE J of Civ Eng. 2023: 27(8):3230–3239. doi: 10.1007/s12205-023-0129-6
  • [12] Sun LZ, Zheng YY, Yu XN. Performance of river sediments after flocculation-pressure filter membranevacuum preloading. Environ Sci and Pollut Res. 2020;27(21):26915–26928. doi: 10.1007/s11356-020-09074-8
  • [13] Fragoso RA, Duarte EA, Paiva J. Contribution of coagulation-flocculation process for a more sustainable pig slurry management. Water Air Soil Pollut. 2015;226(5):1–6. doi: 10.1007/s11270-015-2388-4
  • [14] Abadel AA, Alghamdi H, Alharbi YR, Alamri M, Khawaji M, Abdulaziz MAM, et al. Investigation of alkali-activated slag-based composite incorporating dehydrated cement powder and red mud. Mater. 2023;16(4):1551. doi: 10.3390/ma16041551
  • [15] Zhang N, Zhang H, Schiller G, Feng HB, Gao XF, Li EM, et al. Unraveling the global warming mitigation potential from recycling subway-related excavated soil and rock in China via life cycle assessment. Integr Environ Assess and Management. 2021;17(3):639–650. doi: 10.1002/ieam.4376
  • [16] Lafhaj Z, Samara M, Agostini F, Boucard L, Skoczylas F, Depelsenaire G. Polluted river sediments from the north region of France: treatment with Novosol ® process and valorization in clay bricks. Constr and Build Mater. 2008;22(5):755–762. doi: 10. 1016/j.conbuildmat.2007.01.023
  • [17] De Godoy LGG, Rohden AB, Garcez MR, Da Dalt S, Gomes LB. Production of supplementary cementitious material as a sustainable management strategy for water treatment sludge waste. Case Stud in Constr Mater. 2020;12:e00329. doi: 10.1016/j.cscm.2020.e00329
  • [18] Wasim M, Abadel A, Abu Bakar BH, Alshaikh IMH. Future directions for the application of zero carbon concrete in civil engineering: A review. Case Stud in Constr Mater. 2022;17:e01318. doi: 10.1016/j.cscm. 2022.e01318
  • [19] Priyadharshini P, Ramamurthy K, Robinson RG. Sustainable reuse of excavation soil in cementitious composites. J of Clean Prod. 2018;176:999–1011. doi: 10.1016/j.jclepro.2017.11.256
  • [20] Priyadharshini P, Ramamurthy K, Robinson RG. Reuse potential of stabilized excavation soil as fine aggregate in cement mortar. Constr and Build Mater. 2018;192:141. doi: 10.1016/j.conbuildmat.2018.10.141
  • [21] Kuo WY, Huang JS, Lin CS. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem and Concr Res. 2006;36886. doi: 10.1016/j.cemconres.2005.11.013
  • [22] Sheen YN, Zhang LH, Le DH. Engineering properties of soil-based controlled low-strength materials as slag partially substitutes to Portland cement. Constr and Build Mater. 2013;48:822. doi: 10.1016/j.conbuildmat. 2013.07.046
  • [23] Qian JS, Hu YY, Zhang JK, Xiao WX, Ling JM. Evaluation of the performance of controlled low strength material made of excess excavated soil. J of Clean Prod. 2019;214:79–88. doi: 10.1016/j.jclepro.2018.12.171
  • [24] Zvomuya F, Larney FJ, DeMaere PR, Olson AF. Hydraulic properties of a sandy loam soil following spent drilling mud application on native prairie. Soil Sci Soc of Am J. 2009;73(4):1108–1112. doi: 10.2136/ sssaj2008.0166
  • [25] Zhang C, Liu X, Fu JY, Yang JS, Li LY, Xie YP. Evaluating the feasibility of muck from slurry shield tunnels as a growth medium for landscaping. J of the Air and Waste Management Assoc. 2022;72(5):455–462. doi: 10.1080/10962247.2022.2051775
  • [26] Wang DX, Benzerzour M, Hu X, Huang B, Chen ZG, Xu XY. Strength, permeability, and micromechanisms of industrial residue magnesium oxychloride cement solidified slurry. Int J of Geomech. 2020;(7):20. doi: 10.1061/(ASCE)GM.1943-5622.0001690
  • [27] Li JW. Effect of magnesium oxychloride cement on stabilization/solidification of sewage sludge. Constr and Build Mater. 2010. doi: 10.1016/j.conbuildmat.2009.0 8.011
  • [28] Liu S, Zhan JS, Wang XL. Influence of composition of curing agent and sand ratio of engineering excavated soil on mechanical properties of fluidized solidified soil. Materials Science-Poland. 2023,41(1):57–67. doi: 10.2478/msp-2023-0007
  • [29] Huang M, Sun T, Wang L. Application of premixed solidified soil in backfilling of foundation trench. IOP Conf Ser: Earth and Environ Sci. 2020;510(5):052062. doi: 10.1088/1755-1315/510/5/052062
  • [30] Qian JS, Hu YY, Zhang JK, Xiao WX, Ling JM. Evaluation of the performance of controlled low-strength material made of excess excavated soil. J of Clean Prod. 2019;214:79–88. doi: 10.1016/j.jclepro.2018.12.171
  • [31] Yang Y, Zhong RL, Wang YL, Li GH. Research on the removal of sulfate from ionic rare earth mine tail water by ettringite precipitation method. J of Hebei. University of Environmental Engineering. 2023;33(01):79–83. https://www.nstl.gov.cn/paper_detail.html?id=077228eab370e2e51b59d7c0947b6846. Chinese.
  • [32] China Association for Engineering Construction Standardization. Technical standard for the backfilling project by using premixed fluid solidifying soil, T/CECS 1037-2022. 2022. http://www.cecs.org.cn/xhbz/fbgg/12777.html.Chinese.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42397115-cfb5-4174-b4c6-9cbf4ba9414f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.