PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Verifying and improving map specifications of river network selection for automatic generalization of small-scale maps

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Automated generalization is highly desired for effective map production. This research focuses on the initial stage of generalization, namely object selection. The study aims to conduct river network automatic selection based on map specifications contained in the Minister of Internal Affairs and Administration regulation. The research covers river network selection from the General Geographic Objects Database from 1:250,000 to 1:500,000 detail level. Within the research scope, three selection variants were designed. The first was a basic variant that only included the implementation of the specifications contained in the regulation. The other two were experimental variants: an extended variant and an extended-modified variant with the parameters and data enrichment proposed by the authors. The extended variant has been supplemented with the Id_MPHP index usage, derived from the Map of Hydrographic Division of Poland (MPHP), which defines the hierarchy of watercourses in the river network. The extended-modified variant was implemented according to the guidelines of the regulation, with the use of the Id_MPHP index and additionally with the help of the parameter denoting “priority” watercourses, which was assigned by the authors. The results of the work constitute the generalization models designed in ArcMap 10.8. with the use of Model Builder functionality as well as the maps presenting the selection variants output visualizations. The results were compared visually as well as verified with the reference atlas map generalized by an experienced cartographer. As a result, the map specifications concerning the selection process presented in the regulation proved to be insufficient to generalize river networks properly. The variants proposed in this research made it possible to improve the selection results and enabled the automation of the river selection process. Additional specifications and parameters proposed in this work may constitute an essential supplement to the guidelines contained in the regulation.
Rocznik
Strony
75--91
Opis fizyczny
Bibliogr. 27 poz., mapy, rys.
Twórcy
autor
  • University of Warsaw, Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing Warsaw, Poland
  • University of Warsaw, Faculty of Geography and Regional Studies, Department of Geoinformatics, Cartography and Remote Sensing Warsaw, Poland
Bibliografia
  • Brewer, C. A., Buttenfield, B. P., & Stanislawski, L. V. (2011). Choosing between Geometry Change and Display Change for Multiscale Mapping - The Role of Elimination in Design. Proceedings of the 25th International Cartographic Conference, Paris, France, 3–8 July. https://icaci.org/files/documents/ICC_proceedings/ICC2011/Oral%20Presentations%20PDF/D1-Feature%20selection%20and%20typification%20in%20generalisation/CO-310.pdf
  • Chen, J., Hu, Y., Li, Z., Zhao, R., & Meng, L. (2009). Selective omission of road features based on mesh density for automatic map generalization. International Journal of Geographical Information Science, 23(8), 1013–1032. https://doi.org/10.1080/13658810802070730
  • Christensen, A. H. J. (1999). Cartographic line generalization with waterlines and medial-axes. Cartography and Geographic Information Science, 26(1), 19–32. https://doi.org/10.1559/152304099782424893
  • Chrobak, T., Szombara, S., Kozioł, K., & Lupa, M. (2016). A method for assessing generalized data accuracy with linear object resolution verification. Geocarto International, 32(3), 238–256. https://doi.org/10.1080/10106049.2015.1133721
  • Douglas, D. H., & Peucker, T. K. (1973). Algorithms for the Reduction of the Number of Points Required To Represent a Digitized Line or Its Caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 10(2), 112–122. https://doi.org/10.3138/fm57-6770-u75u-7727
  • Horton, R. E. (1945). Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geological Society of America Bulletin, 56(3), 275–370. https://doi.org/10.1130/0016-7606(1945)56[275:edosat]2.0.co;2
  • International Cartographic Association. Commission II: Definition, Classification and Standardization of Technical Terms in Cartography. (Ed.). (1973). Generalization. In Multilingual dictionary of technical terms in cartography (p. 137). Franz Steiner.
  • Liu, X., Zhan, F. B., & Ai, T. (2010). Road selection based on Voronoi diagrams and “strokes” in map generalization. International Journal of Applied Earth Observation and Geoinformation, 12(Supplement 2), 194–202. https://doi.org/10.1016/j.jag.2009.10.009
  • Ministerstwo Rozwoju, Pracy i Technologii. (2021). Rozporządzenie Ministra Rozwoju, Pracy i Technologii z dnia 27 lipca 2021 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych [The regulation of the Minister of Economic Development and Technology of 27 July 2021 on topographic objects database, general geographic objects database and standard maps]. (Dz.U. 2021 poz. 1412).
  • Ministerstwo Spraw Wewnętrznych i Administracji. (2011). Rozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 17 listopada 2011 r. w sprawie bazy danych obiektów topograficznych oraz bazy danych obiektów ogólnogeograficznych, a także standardowych opracowań kartograficznych [The regulation of the Minister of Internal Affairs and Administration of 17 November 2011 on topographic objects database, general geographic objects database and standard maps]. (Dz.U. 2011 nr 279 poz. 1642).
  • Otwarte Dane. (n.d.). https://dane.gov.pl/
  • Perkal, J. (1966). An attempt at objective generalization. Michigan Inter-University Community of Mathematical Geographers, (10), 58–76.
  • Polish Academy of Sciences. Institute of Geography and Spatial Organization. (1993). Atlas of the Republic of Poland. Surveyor General of Poland.
  • Regionalny Zarząd Gospodarki Wodnej we Wrocławiu. (n.d.). Opracowanie charakterystyki zlewni bilansowej rzeki Nysy Kłodzkiej. https://wroclaw.rzgw.gov.pl/files_mce/Planowanie%20w%20gospodarowaniu%20wodami/charakterystyka_nysa_klodzka.pdf
  • Robinson, A., Sale, R., & Morrison, J. (1978). Elements of cartography (4th ed.). John Wiley and Sons.
  • Spielman, R. M., Jenkins, W. J., Lovett, M. D., & Czarnota-Bojarska, J. (2020). Psychologia. OpenStax. https://openstax.org/books/psychologia-polska/pages/5-6-zasady-postrzegania-w-psychologiigestalt
  • Stanislawski, L. V., Buttenfield, B. P., Bereuter, P., Savino, S., & Brewer, C. A. (2014). Generalisation operators. In D. Burghardt, C. Duchêne & W. Mackaness (Eds.), Abstracting geographic information in a data rich world. Methodologies and Applications of Map Generalisation (pp. 157–195). Springer. https://doi.org/10.1007/978-3-319-00203-3_6
  • Strahler, A. N. (1952). Dynamic basis of geomorphology. Geological Society of America Bulletin, 63(9), 923–938. https://doi.org/10.1130/0016-7606(1952)63[923:dbog]2.0.co;2
  • Szombara, S., & Lupa, M. (2018). Cartographic Generalization of the River Network Including Standards of the Objects Recognition. Proceedings of the 2018 Baltic Geodetic Congress, BGC–Geomatics 2018, 117–120. https://doi.org/10.1109/BGC-Geomatics.2018.00028
  • Thomson, R. C., & Richardson, D. E. (1999). The ‘good continuation’ principle of perceptual organization applied to the generalisation of road networks. Proceedings of the 19th International Cartographic Conference, Ottawa, Canada, 1215–1223 http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=4DA1A15D31A459AF418AD8381C2062F5?doi=10.1.1.202.4737&rep=rep1&type=pdf
  • Tobler, W. R. (1964). Technical report No. 1, „An experiment in the computer generalization of maps”. Department of Geography University of Michigan. https://deepblue.lib.umich.edu/bitstream/handle/2027.42/7972/aja5779.0001.001.pdf?sequence-=5&isAllowed=y
  • Touya, G. (2007). River Network Selection based on Structure and Pattern Recognition. 23rd International Cartographic Conference, Moscow, Russia, August 2007, 4–9. https://doi.org/10.13140/RG.2.1.1594.4167
  • van Altena, V., & Stoter, J. (2016). Context-aware thinning of artificial water networks for map generalization. Journal for Geographic Information Science. GI_Forum, 4(1), 12–29. https://doi.org/10.1553/giscience2016_01_s12
  • Wertheimer, M. (1938). Laws of organization in perceptual forms. In W. D. Ellis (Ed.), A source book of Gestalt psychology (pp. 71–88). Kegan Paul, Trench, Trubner & Company. (Original work published 1923). https://psychclassics.yorku.ca/Wertheimer/Forms/forms.htm
  • Wydawnictwo Naukowe PWN. (n.d.). Nysa Kłodzka. In Encyklopedia PWN: źródło wiarygodnej i rzetelnej wiedzy. https://encyklopedia.pwn.pl/haslo/NysaKlodzka;3949141.html
  • Wydawnictwo Naukowe PWN. (n.d.). Radomka. In Encyklopedia PWN: źródło wiarygodnej i rzetelnej wiedzy. https://encyklopedia.pwn.pl/haslo/Radomka;3965526
  • Zawadzka J. (2020, April 7). Wody. Biebrzański Park Narodowy. https://archiwum.biebrza.org.pl/46,wody
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42394856-0fc0-4231-9c2a-5a5f7065f806
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.