Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the powder mixture which consists of Cu-Fe-Co was produced by using the method of hot pressing technique. In addition, effect of heat treatment process on microstructure and mechanical properties of this alloy was investigated. Following the hot pressing process applied on the samples, heat treatment was carried out at 950°C for two different dwelling times (90 and 180 minutes). Measured density values were considered as physical characteristics, while hardness and fracture strength values were considered as mechanical characteristics. It was observed that porosity rates of hot pressed samples were decreased by increasing of temperature and pressing parameters. In this study it was observed that Cu was spread in matrix and filled the micro porosities. Hardness values were determined to be decreased as a result of grain growth after heat treatment process. That 4 fold increased elongation % values which were achieved by TRS experiments were observed as well.
Wydawca
Czasopismo
Rocznik
Tom
Strony
371--377
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Tunceli University, Department of Mechanical Engineering, Faculty of Engineering, 62100, Tunceli, Turkey
autor
- Tunceli Vocational High School, Tunceli University, 62100, Tunceli, Turkey
Bibliografia
- [1] K. Lu, Science 328, 319-320 (2010).
- [2] M. Krasnowski, T. Kulik, Intermetallics 18, 47-50 (2010).
- [3] J. C. Williams, E. A. Starke, Acta Mater. 51, 5775-5799 (2003).
- [4] D. B. Miracle, Comp. Sci. Tech. 65, 2526-2540 (2005).
- [5] K. K. Chawla, N. Chawla, Metal Matrix Composites, 2012 John Wiley&Sons, New York.
- [6] E. Çelik, S. Islak, C. Ilkılıç, Mater. Tech. 48, 881-884 (2014).
- [7] A. Çanakci, T. Varol, Powder Techn. 268, 72-79 (2014).
- [8] R. Yamanoğlu, M. Zeren, R. M. German, J. Mining Metall. Sect. B-Metall. 48/1, 73-79 (2012).
- [9] E. Çelik, A. K. Aslan, Science of Sintering. 49/3, 225-234 (2017).
- [10] L. Reis, P. M. Amaral, M. de Freitas, L. R. Guerra, Theor. Appl. Fract. Mech. 49, 226-231 (2008).
- [11] M. Zeren, Ş. Karagöz, Materials and Design 28, 1055-1058 (2007).
- [12] S. C. Tan, X. H. Fang, K. H. Yang, Int. J. Refr. Met. Hard Mater. 43, 186-192 (2014).
- [13] A. D. P. Barbosa, G. S. Bobrovnitchii, A. L. D. Skury, et al., Mater. Design 31, 522-526 (2010).
- [14] J. L. Fan, X. H. Qu, B. Y. Huang et al., Rare Metal Mater. Eng. 28, 316 (1999).
- [15] P. Han, F. R. Xiao, W. J. Zou et al., Mater. Design 53, 38-42 (2014).
- [16] M. G. Randall, Critical Reviews in Solid State and Mater. Sci. 35/4, 263-305 (2010).
- [17] V. Y. Novikov, Mater. Lett. 159, 510-513 (2015).
- [18] M. L. Marucci, F. G. Hanejko, Metal Powder Industries Federation, 1-11 (2010).
- [19] E. Çelik, A. K. Aslan, III Int. METECH Conf., 59-64, Istanbul 2015.
- [20] Y. Dong, L. Jun, J. Wen, S. Jie, Z. Kunyu, Mater. Design 41,16-22 (2012).
- [21] M. G. Randall, Air-Conditioning & Sanitary Engineers 2/9, 279-296 (2007).
- [22] S. Spriano, Q. Chen, L. Settineri, S. Bugliosi, Wear 259, 1190-1196 (2005).
- [23] J. Konstanty, Powder Metallurgy Diamond Tools, 2005 Elsevier, London.
- [24] M. Filgueira, D. G. Pinatti, J. Mater. Sci. Forum 228, 416-418 (2003).
- [25] B. Kamphuis, A. Serneels, Industrial Diamond Review 1, 26-32 (2004).
- [26] M. Del Villar, P. Muro, J. M. Sanchez, I. Iturriza, F. Castro, Powder Metal. 44, 82-90 (2001).
- [27] I. E. Clark, Ind. Diam. Rev. 3,177-182 (2002).
- [28] G. Weber, C. Weiss, Ind. Diam. Rev. 2, 28-32 (2005).
- [29] M. Javanbakhta, B. E. Salahinejad, M. J. Hadianfard, Powder Tech. 289, 37-43 (2016).
- [30] K. An, Powder Tech. 234, 117-122 ( 2013).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4231edc0-fdc1-4db8-92f2-635d4d24c984