PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatio-temporal evolution of aftershock energy release following the 1989, MW6.9, LOMA Prieta earthquake in California

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We apply a stochastic model to study Benioff strain release after the Mw6.9 October 18, 1989 Loma Prieta strong earthquake in north California, USA. The model is developed, following a compound Poisson process and contours the evolution of strain release during the aftershock sequence following the main shock occurrence. First, the temporal evolution of the aftershock decay rate was modeled by the Restricted Epidemic Type Aftershock Sequence (RETAS) model and after that the recognized best fit model is integrated into the strain release stochastic analysis. The applied stochastic model of Benioff strain release empowers a more detailed study by detecting possible deviations between observed data and model. Real values of the cumulative Benioff strain release surpass the expected modeled ones, indicating, that large aftershocks cluster at the beginning of the Loma Prieta sequence immediately after the occurrence of the main shock. Strain release spatial analysis reveals release patterns, which change during the aftershock sequence.
Czasopismo
Rocznik
Strony
565--573
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Plovdiv University “Paisiy Hilendarski”, Plovdiv, Bulgaria
Bibliografia
  • 1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
  • 2. Dietz L, Ellsworth W (1990) The October 17, 1989 Loma Prieta, California, earthquake and its aftershocks: geometry of the sequence from high resolution locations. Geophys Res Lett 17(9):1417–1420A
  • 3. Dietz L, Ellsworth W (1991) Loma Prieta data archive, National Information Service for Earthquake Engineering (NISEE)
  • 4. Drakatos G (2000) Relative seismic quiescence before large aftershocks. Pure Appl Geophys 157:1407–1421
  • 5. Eaton JP (1992) Determination of amplitude and duration magnitudes and site residuals from short-period seismographs in Northern California. Bull Seis Soc Am 82(2):533–579
  • 6. Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seis Soc Am 64(5):1363–1367
  • 7. Gentili S, Bressan G (2008) The partitioning of radiated energy and the largest aftershock of seismic sequences occurred in the northeastern Italy and western Slovenia. Journal of Seismology 3:343–354
  • 8. Gospodinov D, Rotondi R (2006) Statistical analysis of triggered seismicity in the Kresna Region of SW Bulgaria (1904) and the Umbria–Marche Region of Central Italy (1997). Pure Appl Geophys 163:1597–1615
  • 9. Gospodinov D, Papadimitriou E, Karakostas V, Ranguelov B (2007) Analysis of relaxation temporal patterns in Greece through the RETAS model approach. Phys Earth Planet Inter 165(3-4):158–175. doi:10.1016/j.pepi.2007.09.001
  • 10. Gospodinov D, Papadimitriou E, Karakostas V, Ranguelov B (2009) Energy release patterns in aftershock sequences of North Aegean Sea (Greece) through stochastic modelling. Cashiers du Centre Europeen de Geodynamique et de Seimologie, North Carolina
  • 11. Gutenberg B, Richter C (1956) Earthquake magnitude, intensity, energy and acceleration. Bull Seisrn Soc Am 46:105–145
  • 12. Hansen G, Condon E (1989) Denial of disaster: the untold story and photographs of the San Francisco earthquake and fire of 1906. Cameron & Co., San Francisco
  • 13. Jaiswal R, Naswa H, Singh A (2010) Seismic Characteristics and Energy Release of Aftershock Sequences of Two Giant Sumatran Earthquakes of 2004 and 2005. In Proceedings of the 8th Biennial International Conference & Exposition on Petrolelum Geophysics, 2010, Hyderabad, Pakistan
  • 14. Kagan Y, Houston H (2005) 2005, Relation between mainshock rupture process and Omori’s law for aftershock moment release rate. Geophys J Int 163:1039–1048. doi:10.1111/j.1365-246X.2005.02772.x
  • 15. Konca O, Hjorleifsdottir V, Song T, Avouac J, Helmberger D, Chen J, Sieh K, Briggs R, Meltzner A (2007) Rupture Kinematics of the 2005 Mw 8.6 Nias-Simeulue Earthquake from the Joint Inversion of Seismic and Geodetic Data. Bull Seismol Soc Am 97:S307–S322. doi:10.1785/0120050632
  • 16. Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27
  • 17. Ogata Y (1998) Space–time point–process models for earthquake occurrences. Ann Inst Stat Math 50:379–402
  • 18. Ogata Y, Jones LM, Toda S (2003) When and where the aftershock activity was depressed: contrasting decay patterns of the proximate large earthquakes in southern California. J Geophys Res 108:2318. doi:10.1029/2002JB002009
  • 19. Parsons T, Segou M, Sevilgen V, Milner K, Field E, Toda S, Stein RS (2014) Stress-based aftershock forecasts made within 24 hours post-mainshock: expected north San Francisco Bay area seismicity changes after the 2014 M = 6.0 West Napa earthquake. Geophys Res Lett 41(24):8792–8799. doi:10.1002/2014GL062379
  • 20. Plafker G, Galloway J (1989) Lessons learned from the Loma Prieta, California, earthquake of October 17, 1989, Circular 1045. U.S. Geological Survey, Reston, p 48
  • 21. Reasenberg P (1985) Second-order moment of central California seismicity, 1969-82. J Geophys Res 90:5479–5495
  • 22. Snyder D, Miller M (1991) Random point processes in time and space. Springer, Verlag
  • 23. Stein S, Okal E (2007) Ultralong period seismic study of the december 2004 Indian ocean earthquake and implications for regional tectonics and the subduction process. Bull Seismol Soc Am 97:S279–S295. doi:10.1785/0120050617
  • 24. Tajima F, Kanamori H (1985) Aftershock area expansion and mechanical heterogeneity of fault zone within subduction zones. Geophys Res Lett 12(6):345–348
  • 25. Taylor H, Karlin S (1984) An introduction to stochastic modeling. Academic Press, Cambridge
  • 26. Tzanis A, Vallianatos F (2003) Distributed power-law seismicity changes and crustal deformation in the SW Hellenic arc. Nat Haz Earth System Sci 3:179–198
  • 27. Utsu T (1970) Aftershocks and earthquake statistics (II): further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences. J Fac Sci 3:198–266
  • 28. Wald DJ, Helmberger D, Heaton TH (1991) Rupture model of the 1989 Loma Prieta earthquake from the inversion of strong ground motion and broadband teleseismic teleseismic data. Bull Seism Soc Am 81:1540–1572
  • 29. Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res 109:B05301. doi:10.1029/2003JB002879
  • 30. Zoback ML (2006) The 1906 earthquake and a century of progress in understanding earthquakes and their hazards. GSA Today 16:4–11
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-422e1eb5-acad-497f-8bad-1bd07810e0b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.