PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Dynamic damage analysis of a ten-layer circular composite plate subjected to low-velocity impact

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A new theoretical solution is presented to determine the stress distribution in a ten-layer simply-supported circular composite plate subjected to the low-velocity impact. The aim of the current study is the investigation of the dynamic analysis of the composite plate when a cylindrical impactor hits the top layer of the plate with an initial velocity of 1 m/s. The plate is made of two adhesive layers adhere two aluminum layers to a six-layer carbon-epoxy laminated plate. The classical non-adhesive elastic contact theory and Hunter's relationship are used to simulate the contact behavior in terms of time and contact radius. By using Hamilton's principle and Layerwise theory, thirty-two equations of motion are derived. Moreover, Johnson–Cook’s criteria, the plastic simulation model, the normal stress–strain failure criterion theory were used for failure analysis of the aluminum, adhesive, and carbon-epoxy layers, respectively. The numerical method was used to solve the thirty-two differential equations of motion based on the finite difference method. Moreover, the relationship between stress and strain is re-written in the numerical code so that the failure criterion theories are satisfied. Moreover, according to the defined failure criterion for each layer, the damage is checked at the end of every time step. In addition, the damping behavior of the composite plate after applying the contact pressure caused by the impact was also investigated. The results showed that the impact resulted in residual stress in the plate.
Rocznik
Strony
158--199
Opis fizyczny
Bibliogr. 40 poz., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran
Bibliografia
  • [1] Khodadadi A, Liaghat G, Ghafarokhi DS, Chizari M, Wang B. Numerical and experimental investigation of impact on bilayer aluminum-rubber composite plate. Thin Wall Struct. 2020;149:106673. https:// doi. org/ 10. 1016/j. tws. 2020. 106673.
  • [2] Sharifi S, Gohari S, Sharifiteshnizi M, Alebrahim R, Burvill C, Yahya Y, Vrcelj Z. Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure. Arch Civil Mech Eng. 2018;18:1715–28. https:// doi. org/ 10. 1016/j. acme. 2018. 07. 006.
  • [3] Gao F, Xiao Z, Guan X, Zhu H, Du G. Dynamic behavior of CHS-SHS tubular T-joints subjected to low-velocity impact loading. Eng Struct. 2019;183:720–40. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 01. 027.
  • [4] Vo TP, Guan ZW, Cantwell WJ, Schleyer GK. Modelling of the low-impulse blast behaviour of fibre–metal laminates based on different aluminium alloys. Compos B Eng. 2013;44:141–51. https:// doi. org/ 10. 1016/j. compo sitesb. 2012. 06. 013.
  • [5] Miao H, Wu Z, Ying Z, Hu X. The numerical and experimental investigation on low-velocity impact response of composite panels: effect of fabric architecture. Compos Struct. 2019;227:111343. https:// doi. org/ 10. 1016/j. comps truct. 2019. 111343.
  • [6] Yao L, Wang C, He W, Lu S, Xie D. Influence of impactor shape on low-velocity impact behavior of fiber metal laminates combined numerical and experimental approaches. Thin Wall Struct. 2019;145:106399. https:// doi. org/ 10. 1016/j. tws. 2019. 106399.
  • [7] Fan W, Shen D, Yang T, Shao X. Experimental and numerical study on low-velocity lateral impact behaviors of RC. UHPFRC and UHPFRC-strengthened columns. Eng Struct. 2019;191:509–25. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 04. 086.
  • [8] Johnson EAF, Shen L, Guiamatsia I, Nguyen GD. Numerical investigation of the impact behaviour of bioinspired nacre-like aluminium composite plates. Compos Sci Technol. 2014;96:13–22. https:// doi. org/ 10. 1016/j. comps citech. 2014. 03. 001.
  • [9] Xiaoyu Z, Fei X, Yuyan Z, Feng W. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos Struct. 2020;236:111882. https:// doi. org/ 10. 1016/j. comps truct. 2020. 111882.
  • [10] Li Y, Yang Y, Li J, Wang B, Liao Y. Experimental-numerical analysis of failure of adhesively bonded lap joints under transverse impact and different temperatures. Int J Impact Eng. 2020;140:103541. https:// doi. org/ 10. 1016/j. ijimp eng. 2020. 103541.
  • [11] Gurgen S. Low-velocity impact performance of UHMWPE composites consolidated with carbide particles. Arch Civil Mech Eng. 2020;20:38. https:// doi. org/ 10. 1007/ s43452- 020- 00042-0.
  • [12] Sakly A, Laksimi A, Kebir H, Benmedakhen S. Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications. Eng Fail Anal. 2016;68:22–31. https:// doi. org/ 10. 1016/j. engfa ilanal. 2016. 03. 001.
  • [13] Liao B, Zhou J, Li Y, Wang P, Xi L, Gao R, Bo K, Fang D. Damage accumulation mechanism of composite laminates subjected to repeated low velocity impacts. Int J Mech Sci. 2020;182:105783. https:// doi. org/ 10. 1016/j. ijmec sci. 2020. 105783.
  • [14] Huo X, Liu H, Luo Q, Sun G, Li Q. On low-velocity impact response of foam-core sandwich panels. Int J Mech Sci. 2020;181:105681. https:// doi. org/ 10. 1016/j. ijmec sci. 2020. 105681.
  • [15] Chunping X, Qinghua Q, Mingshi W, Xuehui Y, Shangjun C, Wei Z, Yuanming X, Jianxun Z, Jianping Z, Tiejun W. Low-velocity impact response of sandwich beams with a metal foam core: Experimental and theoretical investigations. Int J Impact Eng. 2019;130:172–83. https:// doi. org/ 10. 1016/j. ijimp eng. 2019. 04. 014.
  • [16] He W, Liu J, Wang S, Xie D. Low-velocity impact behavior of X-Frame core sandwich structures–experimental and numerical investigation. Thin Wall Struct. 2018;131:718–35. https:// doi. org/ 10. 1016/j. tws. 2018. 07. 042.
  • [17] Liu R, Chen PW. Modeling ignition prediction of HMX-based polymer bonded explosives under low velocity impact. Mech Mater. 2018;124:106–17. https:// doi. org/ 10. 1016/j. mechm at. 2018. 05. 009.
  • [18] Wang J, Ren X, Xu Y, Zhang W, Zhu J, Li B. Thermodynamic behavior of NiTi shape memory alloy against low-velocity impact: experiment and simulation. Int J Impact Eng. 2020;139:103532. https:// doi. org/ 10. 1016/j. ijimp eng. 2020. 103532.
  • [19] Liu B, Han Q, Zhong X, Lu Z. The impact damage and residual load capacity of composite stepped bonding repairs and joints. Compos B Eng. 2019;158:339–51. https:// doi. org/ 10. 1016/j. compo sitesb. 2018. 09. 096.
  • [20] Fan W, Liu B, Huang X, Sun Y. Efcient modeling of flexural and shear behaviors in reinforced concrete beams and columns subjected to low-velocity impact loading. Eng Struct. 2019;195:22–50. https:// doi. org/ 10. 1016/j. engst ruct. 2019. 05. 082.
  • [21] Gao Q, Liao WH, Wang L. On the low-velocity impact responses of auxetic double arrowed honeycomb. Aerosp Sci Technol. 2020;98:105698. https:// doi. org/ 10. 1016/j. ast. 2020. 105698.
  • [22] Allam O, Draiche K, Bousahla AA, Bourada F, Tounsi A, Benrahou KH, Mahmoud SR, Bedia EAA, Tounsi A. A generalized 4-unknown refined theory for bending and free vibration analysis of laminated composite and sandwich plates and shells. Comput Concrete. 2020;26:185–201. https:// doi. org/ 10. 12989/ cac. 2020. 26.2. 185.
  • [23] Belbachir N, Bourada M, Draiche K, Tounsi A, Bourada F, Bousahla AA, Mahmoud SR. Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory. Smart Struct Syst. 2020;25:409–422. https:// doi. org/ 10. 12989/ sss. 2020. 25.4. 409.
  • [24] Draiche K, Bousahla AA, Tounsi A, Alwabli AS, Tounsi A, Mahmoud SR. Static analysis of laminated reinforced composite plates using a simple first-order shear deformation theory. Comput Concrete. 2019;24:369–378. https:// doi. org/ 10. 12989/ cac. 2019. 24.4. 369.
  • [25] Li DH, Zhang F. Full extended layerwise method for the simulation of laminated composite plates and shells. Comput Struct. 2017;187:101–13. https:// doi. org/ 10. 1016/j. comps truc. 2016. 10. 023.
  • [26] Alipour MM, Shaban M. Natural frequency and bending analysis of heterogeneous polar orthotropic-faced sandwich panels in the existence of in-plane pre-stress. Arch Civil Mech Eng. 2020;20:111. https:// doi. org/ 10. 1007/ s43452- 020- 00105-2.
  • [27] Garg A, Chalak HD, Chakrabarti A. Comparative study on the bending of sandwich FGM beams made up of different material variation laws using refined layerwise theory. Mech Mater. 2020;151:103634. https:// doi. org/ 10. 1016/j. mechm at. 2020. 103634.
  • [28] Pekatsinas CS, Saravanos DA. A cubic spline layerwise time domain spectral FE for guided wave simulation in laminated composite plate structures with physically modeled active piezoelectric sensors. Int J Sol Struct. 2017;124:176–91. https:// doi. org/ 10. 1016/j. ijsol str. 2017. 06. 031.
  • [29] Yasin MY, Khalid HM, Beg MS. Exact solution considering layerwise mechanics for laminated composite and sandwich curved beams of deep curvatures. Compos Struct. 2020;244:112258. https:// doi. org/ 10. 1016/j. comps truct. 2020. 112258.
  • [30] Arefi M, Civalek O. Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory. Arch Civil Mech Eng. 2020;20:22. https:// doi. org/ 10. 1007/ s43452- 020- 00032-2.
  • [31] Abualnour M, Chikh A, Hebali H, Kaci A, Tounsi A, Bousahla AA, Tounsi A. Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory. Comput Concrete. 2019;24:489–498. https:// doi. org/ 10. 12989/ cac. 2019. 24.6. 489.
  • [32] Belbachir N, Draich K, Bousahla AA, Bourada M, Tounsi A, Mohammadimehr M. Bending analysis of anti-symmetric crossply laminated plates under nonlinear thermal and mechanical loadings. Steel Compos Struct. 2019;33:81–92. https:// doi. org/ 10. 12989/ scs. 2019. 33.1. 081.
  • [33] Sahla M, Saidi H, Draiche K, Bousahla AA, Bourada F, Tounsi A. Free vibration analysis of angle-ply laminated composite and soft core sandwich plates. Steel Compos Struct. 2019;33:663–679. https:// doi. org/ 10. 12989/ scs. 2019. 33.5. 663.
  • [34] Kharghani N, Soares CG. Analysis of composite laminates containing through-the-width and embedded delamination under bending using layerwise HSDT. Eur J Mech A Sol. 2020;82:104003. https:// doi. org/ 10. 1016/j. eurom echsol. 2020. 104003.
  • [35] Mondal S, Ramachandra LS. Nonlinear dynamic pulse buckling of imperfect laminated composite plate with delamination. Int J Solids Struct. 2020;198:170–82. https:// doi. org/ 10. 1016/j. ijsol str. 2020. 04. 010.
  • [36] Rakocevic M, Popovic S, Ivanisevic N. A computational method for laminated composite plates based on layerwise theory. Compos B Eng. 2017;122:202–18. https:// doi. org/ 10. 1016/j. compositesb. 2017. 03. 044.
  • [37] Alipour MM. Transient forced vibration response analysis of heterogeneous sandwich circular plates under viscoelastic boundary support. Arch Civil Mech Eng. 2018;18:12–31. https:// doi. org/ 10. 1016/j. acme. 2017. 05. 007.
  • [38] Raissi H. Stress analysis in adhesive layers of a five-layer circular sandwich plate subjected to temperature gradient based on layer wise theory. Mech Based Design Struct Mach. 2020; (In Press). https:// doi. org/ 10. 1080/ 15397 734. 2020. 17766 19.
  • [39] Nikrad SF, Asadi H, Ozbakkaloglu T. Compressive instability of open section nanocomposite struts using a layerwise theory. Comput Methods Appl Mech Eng. 2019;335:820–39. https:// doi. org/ 10. 1016/j. cma. 2019. 07. 001.
  • [40] Alipour MM. Effects of elastically restrained edges on FG sandwich annular plates by using a novel solution procedure based on layerwise formulation. Arch Civil Mech Eng. 2016;16:678–94. https:// doi. org/ 10. 1016/j. acme. 2016. 04. 015.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-422d1a6c-f1b3-404f-a26a-e3ef3c0bf9e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.