PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Variations of Leaf Economic Spectrum of Eight Dominant Plant Species in Two Successional Stages Under Contrasting Nutrient Supply

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Leaf functional traits are indicators of both plant community and ecosystem responses to environmental factors and can thus increase our capacity to understand ecosystem processes and community assembly due to climate change. The variation in leaf functional traits between succession stages in Horqin Sandy Land is caused by soil nutrient content and by intrinsic biological characteristic of species, but the effects are different. Leaf economic spectra were assessed for seven leaf traits of eight species from early and advanced stages of succession. Species from early succession stages are Agriophyllum squarrosum (L.) Moq., Corispermum macrocarpum Bge., Setaria viridis (L.) Beauv. and Pennisetum centrasiaticum Tzvel., and species from advanced successional stages are Chenopodium acuminatum Willd., Chloris virgate Swartz, Digitaria sanguinalis (L.) Scop. and Leymus secalinus (Georgi) Tzvel. All these species were grown in a greenhouse experiment under two contrasting nutrient supplies including high nutrient level (N+, with 20 g of nutrient addition) and low nutrient level (N-, with no added nutrients). As expected, the resource uptake strategies of the species were affected by soil fertilization addition. Leaf nitrogen content (LNC), leaf phosphorus content (LPC), and photosynthetic capacity per unit leaf area (Aarea) significantly increased at high nutrient level but LPC is more dramatically changed than others leaf traits. Leaf life span (LLS) and specific leaf area (SLA) did not show similar tendency with succession stage. At the same nutrient level, LES still shows different pattern between the early and the advanced succession stages. Species from early succession stages have higher LPC and Aarea, compared to species from advanced stages. Species from early succession stage also tend to have higher SLA and higher LNC than at the advanced succession stage. The LLS did not show any clear changes with succession process. These results provide evidence that LES shift along the succession process is mainly caused by intrinsic biological characteristic of species.
Rocznik
Strony
14--24
Opis fizyczny
Bibliogr. 34 poz., tab., wykr.
Twórcy
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China
autor
  • Naiman Desertification Research Station Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 322 Donggang West Road, Lanzhou 730000, China
Bibliografia
  • [1] Cordell S. , Goldstein G. , Meinzer F. C. , Vitousek P. M. 2001 — Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii — Oecologia, 127: 198–206.
  • [2] Evans J. R. , Poorter H. 2001 — Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain — Plant Cell Environ. 24: 755–767.
  • [3] Frenette-Dussault C. , Shipley B. , Meziane D. , Hingrat Y. 2013 — Trait-based climate change predictions of plant community structure in arid steppes — J. Ecol. 101: 484–492.
  • [4] Garnier E. , Laurent G. , Bellmann A. , Debain S. , Berthelier P. , Ducout B. , Roumet C. , Navas M. L. 2001 — Consistency of species ranking based on functional leaf traits — New Phytol. 152: 69–83.
  • [5] Grimshaw H. M. , Allen S. E. , Parkinson J. A. 1989 — Nutrient elements in chemical analysis of ecological material. Ed 2. — Blackwell Scientific, Oxford, UK, pp. 81–159.
  • [6] Huang Y. X. , Zhao X. Y. , Zhang H. X. , Huang G. , Luo Y. Y. , Japhet W. 2009 — A comparison of phenotypic plasticity between two species occupying different positions in a successional sequence — Ecol. Res. 24: 1335–1344.
  • [7] Huang Y. X. , Zhao X. Y. , Zhang H. X. , Japhet W. , Zuo X. A. , Luo Y. Y. , Huang G. 2009 — Allometric effects of Agriophyllum squarrosum in response to soil nutrients, water, and population density in the Horqin Sandy Land of China — J. Plant Biol. 52: 210–219.
  • [8] Jackson B. G. , Peltzer D. A. , Wardle D. A. 2013 — The within-species leaf economic spectrum does not predict leaf litter decomposability at either the withinspecies or whole community levels — J. Ecol. 101: 1409–1419.
  • [9] Kazakou E. , Garnier E. , Gimenez O. 2007 — Contribution of leaf life span and nutrient resorption to mean residence time: elasticity analysis — Ecology, 88: 1857–1863.
  • [10] Kazakou E. , Garnier E. , Navas M. L. , Roumet C. , Collin C. , Laurent G. 2007 — Components of nutrient residence time and the leaf economics spectrum in species from Mediterranean old-fields differing in successional status — Funct. Ecol. 21: 235–245.
  • [11] Kazakou E. , Vile D. , Shipley B. , Gallet C. , Garnier E. 2006 — Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession — Funct. Ecol. 20: 21–30.
  • [12] Koerselman W. , Meuleman A. F. M. 1996 — The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation — J. Appl. Ecol. 33: 1441–1450.
  • [13] Laughlin D. C. 2014 — The intrinsic dimensionality of plant traits and its relevance to community assembly — J. Ecol. 102: 186–193.
  • [14] Li F. R. , Kang L. F. , Zhang H. , Zhao L. Y. , Shirato Y. , Taniyama I. 2005 — Changes in intensity of wind erosion at different stages of degradation development in grasslands of Inner Mongolia, China — J. Arid Environ. 62: 567–585.
  • [15] Li Y. L. , Meng Q. T. , Zhao X. Y. Zhang T. H. 2007 — Characteristics of species composition and plant diversity in the process of vegetation restoration on moving dunes in the Kerqin Sandy Land — Acta prataculturae sinica, 16: 54–61 (in Chinese, English summary).
  • [16] Mao W. , Li Y. L. , Cui J. Y. , Zuo X. A. , Zhao X. Y. 2011 — Variations in foliar nutrient resorption efficiency of different plant growth forms in a trmperate sandy grassland — Pol. J. Ecol. 59: 355–365.
  • [17] Navas M. L. , Ducout B. , Roumet C. , Richarte J. , Garnier J. , Garnier E. 2003 — Leaf life span, dynamics and construction cost of species from Mediterranean old-fields differing in successional status — New Phytol. 159: 213–228.
  • [18] Ordoñez J. C. , van Bodegom P. M. , Witte J. P. M. , Bartholomeus R. P. , Van Dobben H. F. , Aerts R. 2010 — Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply — Ecology, 91: 3218–3228.
  • [19] Ordoñez J. C. , van Bodegom P. M. , Witte J. P. M. , Wright I. J. , Reich P. B. , Aerts R. 2009 — A global study of relationships between leaf traits, climate and soil measures of nutrient fertility — Global Ecol. Biogeogr. 18: 137–149.
  • [20] R Development Core T. 2009 — R: a language and environment for statistical computing — Vienna, Austria: R Foundation for Statistical Computing.
  • [21] Reich P. B. , Ellsworth D. S. , Walters M. B. 1998 — Leaf structure (specific leaf area) modulates photosynthesis-nitrogen relations: evidence from within and across species and functional groups — Funct. Ecol. 12: 948–958.
  • [22] Reich P. B. , Walters M. B. , Ellsworth D. S. 1997 — From tropics to tundra: Global convergence in plant functioning — Proc. Nat. Acad. Sci. USA. 94: 13730–13734.
  • [23] Reich P. B. , Walters M. B. , Ellsworth D. S. , Uhl C. 1994 — Photosynthesis-nitrogen relations in Amazonian tree species — Oecologia, 97: 62–72.
  • [24] Reich P. B. , Wright I. J. , Lusk C. H. 2007 — Predicting leaf physiology from simple plant and climate attributes: A global GLOPNET analysis — Ecol. Appl. 17: 1982–1988.
  • [25] Ren H. , Xu Z. , Huang J. , Clark C. , Chen S. , Han X. 2011 — Nitrogen and water addition reduce leaf longevity of steppe species — Ann. Bot. 107.
  • [26] Roderick M. L. , Berry S. L. , Noble I. R. 2000 — A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves — Funct. Ecol. 14: 423–437.
  • [27] Vile D. , Garnier É. , Shipley B. , Gérard L. , Navas M.-L. , Roumet C. , Lavorel S. , Díaz S. , Hodgson J. G. , Lloret F. , Midgley G. Y. , Poorter H. , Rutherford M. C. , Wilson P. J. Wright I. J. 2005 — Specific leaf area and dry matter content estimate thickness in laminar leaves — Ann. Bot. 96: 1129–1136.
  • [28] Westoby M. 1998 — A leaf-height-seed (LHS) plant ecology strategy scheme — Plant Soil, 199: 213–227.
  • [29] Westoby M. , Falster D. S. , Moles A. T. , Vesk P. A. Wright I. J. 2002 — Plant ecological strategies: Some leading dimensions of variation between species — Annu. Rev. Ecol. Evol. Syst. 33: 125–159.
  • [30] Wright I. J. , Reich P. B. , Poorter H. , Villar R. , Warton D. I. , Westoby M. , Cornelissen J. H. C. , Falster D. S. , Garnier E. , Hikosaka K. , Lamont B. B. , Lee W. , Oleksyn J. , Osada N. 2005 — Assessing the generality of global leaf trait relationships — New Phytol. 166: 485–496.
  • [31] Wright I. J. , Reich P. B. , Westoby M. 2001 — Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats — Funct. Ecol. 15: 423–434.
  • [32] Wright I. J. , Reich P. B. , Westoby M. , Ackerly D. D. , Baruch Z. , Bongers F. , Cavender-Bares J. , Chapin T. , Cornelissen J. H. C. , Diemer M. , Flexas J. , Garnier E. , Groom P. K. , Gulias J. , Hikosaka K. , Lamont B. B. , Lee T. , Lee W. , Lusk C. , Midgley J. J. , Navas M.-L. , Niinemets U. , Oleksyn J. , Osada N. , Poorter H. , Poot P. , Prior L. , Pyankov V. I. , Roumet C. , Thomas S. C. , Tjoelker M. G. , Veneklaas E. J. , Villar R. 2004 — The worldwide leaf economics spectrum — Nature, 428: 821–827.
  • [33] Zhang J. Y. and Zhao H. L. 2004 — Spatial patterns of main species of the grassland community iin the recovering succession in Horqin sandy land — Chinese J. Ecol. 23: 1–6 (in Chinese, English summary).
  • [34] Zhang J. Y. , Zhao H. L. , Zhang T. H. , Zhao X. Y. , Drake S. 2005 — Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land — J. Arid Environ. 62: 555–566 (in Chinese, English summary).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42284aeb-af4c-487a-b435-1c1fdf8cef2d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.