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This paper describes the method which allows an estimation of information entropy in the meaning
of Shannon. The method is suitable to an estimation which sample has a higher value of information
entropy. Several algorithms have been used to estimate entropy, assuming that they do it faster.
Each algorithm has calculated this value for several text samples. Then analysis has verified which
comparisons of the two samples were correct. It has been found that the probabilistic algorithm is the
fastest and most effective in returning the estimated value of entropy.

1. INTRODUCTION

Since the discovery, information entropy [10] has found many uses in science [1], [2], [4],
[7], [13]. One of the field in which it has found application is digital image processing [5], [8].
It should be noted here that the JPEG image file format uses Shannon’s entropy theorem [1] in
coding image [12]. Medicine increasingly uses these techniques that help diagnose diseases in
humans [3], [9]. The analysis of classical methods of entropy computing has emerged the new
method for faster entropy computing. Ultimately, this can be moved into software development
that will more quickly return the results from the analyzed sample being the image.

2. VISUALIZATION OF ENTROPY

The entropy information [1] estimation of binary sequence can be done via counting the
all ones from this sequence. The visualization of Shannon’s entropy can be shown with any
n-element sequence composed of 0 and 1 symbols, however 4-bit vector presented as string
will be used to facilitate understanding the visualization (Table 1).
It should be followed by a rule. From Table 1, it follows that sequence consisting only of the
same bits (bit 0 or 1) have the lowest entropy equal to zero. When the sequence consists of
equal number of bits 0 and 1, its entropy is the greatest. Symbols between 〈 〉 means string
sequence. The Binary vector is binary representation of number in Decimal value column
represented as string. Another column Number of different pairs contains an integer number
of estimated entropy.
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Table 1. The visualization of information entropy for a 4-bit binary vector.

No. Decimal value Binary vector Number of different pairs (integer entropy) Shannon’s entropy

1 0 〈0000〉 0 0.000
2 1 〈0001〉 3 0.811
3 2 〈0010〉 3 0.811
4 3 〈0011〉 4 1.000
5 4 〈0100〉 3 0.811
6 5 〈0101〉 4 1.000
7 6 〈0110〉 4 1.000
8 7 〈0111〉 3 0.811
9 8 〈1000〉 3 0.811
10 9 〈1001〉 4 1.000
11 10 〈1010〉 4 1.000
12 11 〈1011〉 3 0.811
13 12 〈1100〉 4 1.000
14 13 〈1101〉 3 0.811
15 14 〈1110〉 3 0.811
16 15 〈1111〉 0 0.000

Let 〈a0a1a2a3...an−1〉 be input sequence composed of n elements and P be set all possible
pairs from all 〈a0a1a2a3...an−1〉 elements, then estimated entropy (hereinafter referred to as
integer entropy) is defined as:

En(〈a0a1a2a3...an−1〉) =
∑
P

γ({ai, aj}), (1)

where the function γ is defined as:

γ({ai, aj}) =
{
1, ai 6= aj
0, ai = aj

for i, j = 0, 1, ..., n− 1. (2)

The mentioned P set symbolizes set of all pairs from binary vector 〈a0a1a2a3...an−1〉 generated
via algorithm:

function EnI(〈a0a1a2a3...an−1〉)
for i← 0 to LENGTH(〈a0a1a2a3...an−1〉)− 1

for j ← i+ 1 to LENGTH(〈a0a1a2a3...an−1〉)− 1
P ← P ∪ {GET_ELEMENT(〈a0a1a2a3...an−1〉, i), GET_ELEMENT(〈a0a1a2a3...an−1〉, j)}

return P

The GET_ELEMENT(〈a0a1a2a3...an−1〉, i) function returns only one element at i-position from
〈a0a1a2a3...an−1〉. The algorithm EnI is graphically presented on Figure 1.

Fig. 1. The visualization of EnI algorithm.

The arrows that are shown on Figure 1 mean pairs. From n-elements sequence can be generated
all possible pairs which its number is equal to

(
n
2

)
. In the case of 4-length binary vector,

number of pairs equal to
(
n
2

)
= 6.
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Positions of elements in pairs do not matter, because it follows directly from the function γ so
that γ({ai, aj}) = γ({aj, ai}) . Normally, arrangement elements in sequence 〈a0a1a2a3...an−1〉
does not affect the integer entropy. However, in some cases such influence exists. This is shown
in Figure 2. Furthermore, arrangement is compelling when using a pairs generator that produces
less of it to decrease the speed of the algorithm.

Fig. 2. An example of the influence of element selection on the integer entropy En value.

As mentioned earlier, the way of computing integer entropy for 4 elements can be expanded
in the same way for n-elements. The entropy values obtained from the presented algorithm
EnI are very close to Shannon’s entropy [10], [11] (Fig. 3).

Fig. 3. The visualization of the integer entropy and Shannon’s entropy for 128-elements binary sequence.

In the Figure 3 the x-axis shows only binary sequences that can be decimal as 0, 1, 3, 7, 15,
31,..., 2128−1 which gives only 64 sequences of all 2128 possible binary sequences. To improve
readability the graph in Figure 3, values on the x-axis have been normalized to range [0, 1]
according to the rule 0

ω
, 1
ω

, 3
ω
, 7
ω

, 15
ω
, 31
ω

, ..., 2
128−1
ω

, where ω = 2128 − 1. The choice of such
binary sequences is justified by the fact that these sequences determine all possible values of
entropy for both Shannon [10] and integer entropies. To better illustrate this difference, see
Figure 4. Normalized integer entropy was calculated using EnNORMALIZED(〈a0a1a2a3...a63〉) =
En(〈a0a1a2a3...a63〉)
EnMAX(〈a0a1a2a3...a63〉)

formula, where EnMAX(〈a0a1a2a3...a63〉) = En(〈111...1︸ ︷︷ ︸
32

000...0︸ ︷︷ ︸
32

〉).
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Fig. 4. The visualization of differences between the integer and Shannon’s entropy.

It should be noted that when the different pairs increase, the difference between Shannon’s
entropy and integer entropy is decreased.

3. EXPERIMENTS AND EXPECTATIONS

The purpose of the analysis will be to select an algorithm that generates pairs the fastest.
Such an algorithm must also return the correct value of the integer entropy. Validation of
the correct integer entropy for a sequence can be made when it will compare with the integer
entropy of another a sequence. However, the entropy of the information according to Shannon’s
rule for those sequences must be calculated first. The algorithms under investigation do not
examine the distribution of symbols in a sequence, as this would lead to a significant increase
in executing time. It can be said that the presented algorithms are variations of the construction
of two for loops. The following algorithms of generation pairs will be checked:

I. The naive algorithm EnI(〈a0a1a2a3...an−1〉) - this algorithm was presented in the second
chapter.

II. The random algorithm EnII(〈a0a1a2a3...an−1〉). In this method, the pairs are randomly
selected. A random number generator is used which minimizes the probability of selecting
a number that has already been selected. The α ∈ N coefficient determines how many pairs
will be drawn together and it satisfies the equation

(
n
2

)
> (n − 1)α from a certain n.

In this research the value of α = 4 was assumed.

function EnII(〈a0a1a2a3...an−1〉)
for i← 0 to (LENGTH(〈a0a1a2a3...an−1〉)− 1) · α

ar = GET_ELEMENT(〈a0a1a2a3...an−1〉, [RAND(0, n− 1)])
al = GET_ELEMENT(〈a0a1a2a3...an−1〉, [RAND(0, n− 1)])
P ← P ∪ {ar, al}

return P

III. The algorithm of k-nearest adjacent changes EnIII(〈a0a1a2a3...an−1〉). It can be selected
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the following number of neighbors k = 2, 4, 6, 8, ..., kmax, where kmax should not exceed
2
3n to the algorithm returns the correct values for integer entropy.

Fig. 5. An example of 3-nearest adjacent changes for a0, a1, a2 element in sequence 〈a0a1a2a3...an−1〉.

IV. The algorithm selecting the pairs according to a sequence EnIV (〈a0a1a2a3...an−1〉). In
this research, the sequence is 〈101010...10〉. When encountered symbol 0 at i-position,
algorithm omits appropriate element ai.

Fig. 6. The visualization of algorithm generating pairs from every second element of binary vector 〈a0a1a2a3...an−1〉 for
three elements a0, a1 and a2.

V. The algorithm with step instructions EnV (〈a0a1a2a3...an−1〉). Applying a step instruction
to the for loop greatly speeds up the operation of this algorithm. This value for the step
instruction was set to generate enough pairs to compute the integer entropy value.

function EnV (〈a0a1a2a3...an−1〉)
for i← 0 to LENGTH(〈a0a1a2a3...an−1〉)− 1 step 3

for j ← i+ 1 to LENGTH(〈a0a1a2a3...an−1〉)− 1 step 3
P ← P∪{GET_ELEMENT(〈a0a1a2a3...an−1〉, i), GET_ELEMENT(〈a0a1a2a3...an−1〉, j)}

return P

VI. The algorithm calculating the Shannon entropy H(〈a0a1a2a3...an−1〉). For n-elements
sequence 〈a0a1a2a3...an−1〉 consists with values from 256-elements set and statistics set
{S0, S1, ..., S255}, S0, S1, ..., S255 ∈ N, exists algorithm calculating the entropy H:

function H(〈a0a1a2a3...an−1〉)
for i← 0 to LENGTH(〈a0a1a2a3...an−1〉)− 1
SGET_ELEMENT(〈a0a1a2a3...an−1〉,i) ← SGET_ELEMENT(〈a0a1a2a3...an−1〉,i) ∪

∪ {GET_ELEMENT(〈a0a1a2a3...an−1〉, i)}
for i← 0 to 255

if Si 6= ∅
p← card(Si)

LENGHT(〈a0a1a2a3...an−1〉)
h← p · log p
H ← H + h
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return −H

Each algorithm will be tested on two groups of strings. The first group contains strings that
form the text of a natural language. The second group contains randomly generated character
strings. In each group there are 10 strings of different lengths, from which 5 comparisons will
be done. The analysis deals with strings consist of 8, 16, 32, 64 and 128 characters.

For two s1 and s2 strings of the same length, the integer entropies EnA(s1), EnA(s2) are calcu-
lated by means of algorithms A = {I, II, III, IV, V } and by the standard algorithm for entropy
H for H(s1), H(s2) according to the Shannon’s formula. First, we compare the entropy of the
Shannon’s formula to determine the correct result of the entropy comparison. The possible result
rH of the comparison is from the set rH ∈ {H(s1) = H(s2), H(s1) < H(s2), H(s1) > H(s2)}
and then rA for the integer entropies will be done by algorithms EnA indexed by A. If the
result rH = rA, then the comparison is correct for the given algorithm A. The expectation is
that as many comparisons are valid for the given algorithm in the shortest possible time of its
execution.

4. RESULT

In this study, the choice of programming language is irrelevant, because the relationship
between the positions of the instruction remains constant. In every procedural language the
presented algorithms EnI , EnII , EnIII , EnIV , EnV , H can be expressed in the same way. In
Tables 2 and 3, the unit of comparison time is tu, which is the average execution time of all
the most important instructions in the algorithms involved in the research. The following tables
show the results of the analysis of character strings by pair’s generation algorithms.

Table 2. Times and integer entropies from the real data.

Real data sequence
Comparison no. 1 2 3 4 5
Sequence length 8 16 32 64 128

A
lg

or
ith

m
s

EnI
Entr. int. 28 25 117 117 467 466 1898 1890 7573 7538
Time [tu] 206 203 855 855 3477 3476 14060 14052 56471 56436

EnII
Entr. int. 32 21 58 58 119 117 243 239 476 462
Time [tu] 290 279 572 572 1154 1143 2293 2289 4574 4560

EnIII
Entr. int. 13 13 102 102 452 451 1884 1875 7560 7523
Time [tu] 116 116 765 765 3387 3386 13971 13962 56383 56346

EnIV
Entr. int. 21 20 84 84 325 317 1281 1266 5093 5077
Time [tu] 165 164 628 628 2437 2429 9601 9586 38117 38101

EnV
Entr. int. 6 6 15 15 65 61 216 203 888 890
Time [tu] 51 51 120 120 486 482 1649 1636 6653 6655

H
Entropy 3.0000 2.4056 3.6250 3.6250 3.6914 3.6639 4.0080 3.9516 3.9174 3.9152

Time [tu] 2219 1864 3133 3133 3537 3537 4523 4346 4537 4893

The presented algorithms generating pairs have been verified practically. Many attempts have
been made which indicates that in a large number of algorithms return the correct values
of integer entropy. The correct values have been verified during comparisons. A total of 50
comparisons were made and 44 were indicates as valid. For real and random sequences using
the EnV algorithm, 2 incorrect comparisons were made. Regarding the return of integer entropy,
the EnV algorithm turned out to be the worst. Repeatedly repeated experiments for the EnV
algorithm did not improve. Similarly, for the EnIII algorithm with 8-elements sequences, the
result could not be improved too.
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Table 3. Times and integer entropies from the random data.

Random data sequence
Comparison no. 1 2 3 4 5
Sequence length 8 16 32 64 128

A
lg

or
ith

m
s

EnI
Entr. int. 25 27 117 116 482 479 1958 1943 7854 7881
Time [tu] 203 205 855 854 3492 3489 14120 14105 56752 56779

EnII
Entr. int. 27 30 60 58 125 122 249 240 494 495
Time [tu] 285 288 574 572 1151 1148 2299 2290 4592 4593

EnIII
Entr. int. 11 12 102 102 468 465 1944 1928 7839 7866
Time [tu] 114 115 765 765 3403 3400 14031 14015 56662 56689

EnIV
Entr. int. 18 20 84 82 329 324 1331 1316 5290 5297
Time [tu] 162 164 628 626 2441 2436 9651 9636 38314 38321

EnV
Entr. int. 5 6 15 14 62 62 225 229 906 916
Time [tu] 50 51 120 119 483 483 1658 1662 6671 6681

H
Entropy 2.4056 2.7500 3.6250 3.5000 4.2417 4.1403 4.6186 4.4726 4.7315 4.8078

Time [tu] 1864 2042 3133 2956 4606 4427 5770 5594 6497 6497

In the study also checked the execution times of algorithms generating pairs of symbols from
strings. It would be easy to define these times without performing algorithms; however, the
value of the integer entropy returned by these algorithms is important. It allows checking
whether integer entropies are calculated well.

The results show how important a random factor is, therefore, the best times have been obtained
by the EnII algorithm. Algorithm EnII is so fast that it can overtake the algorithm H . The
EnV algorithm also has good timing, but it does not always return the correct value of integer
entropy. It can be admitted that the presented random algorithm is essentially a Monte Carlo
method [6], which accelerates the calculation of the entropy value of the information.

The naive algorithm EnI is not worthy of use because the time of computing integer entropy
far exceeds the entropy calculation time by the H algorithm. For real strings, time is 11 times
longer than for random strings. This algorithm is also not worth developing and is suitable to
return the correct value of integer entropy in further analyzes.

In real data, 16-character strings were chosen so that the entropy was equal. It was the trial
whether it is possible detects entropy equation between two strings using integer entropy
methods. These results provide confirmatory evidence that all algorithms deal with this situation.

It is also worth noting that all algorithms for short strings (8, 16, 32-characters) generate faster
integer entropy values. Hence, here comes the conclusion that the algorithms are suitable for
short samples.

5. FURTHER WORKS

The study focused on samples up to 128 elements. Further studies will include larger samples.
To do this, the new research will use some of the existing EnI , EnII , EnIII , EnIV , EnV
functions and match them to the modified input samples. Sample modification will consist in
dividing them in such a way as to preserve the entropy information. In extended studies, we
will also look for the dependence of element selection on the integer entropy value calculated
from the selected elements. The dependency must strive for the principle of less elements and
more accurate value of integer entropy. The purpose of such searches will be to find patterns
of selection and to generalize them to a larger class of samples.
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[13] WĘDROWSKA E. Wykorzystanie entropii Shannona i jej uogólnień do badania rozkładu prawdopodobieństwa zmiennej
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