PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and implementation of robotized wire arc additive repair of a gas turbine diaphragm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current practice of reconstruction of oxidized turbine parts (due to hot corrosion) using arc welding methods facilitates restoration of the nominal shapes and dimensions, as well as other attributes and features. Intense development of 3D additive methods and techniques contributes to the repair/modification of different parts including gas turbine (GT) hardware. The article proves the viability of the concept of using a robotized additive arc welding metal active gas (MAG) process to repair and modify gas turbine diaphragms using different filler materials from the substrate. The industrialized robotic additive process (hybrid repair) shows that very good results were achieved if the diaphragm is cast of nickel-iron and the filler material for welding the passes is austenitic stainless steel (for instance 308 LSi). This is one of the novelties introduced to the repair process that was granted a patent (US11148235B2) and is already implemented in General Electric Service Centers.
Rocznik
Strony
art. no. e147920
Opis fizyczny
Bibliogr 22 poz., rys., tab.
Twórcy
  • GE Power Sp. z o.o. – Oddział Engineering Innovation Center w Warszawie, Al. Krakowska 110/114, 02-256 Warsaw, Poland
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, ul. Nowowiejska 24, 00-665 Warsaw, Poland
autor
  • GE Marmara Technology Center Müh. Hiz. Ltd. Sti. Tubitak-Mam Teknoloji Serbest Bolgesi, 41400, Gebze/Kocaeli, Turkey
Bibliografia
  • [1] L. Jyothish Kumar, P.M. Pandey, and D.I. Wimpenny, 3D Printing and Additive Manufacturing Technologies, Springer Singapore, 2019, pp. 1–13, doi: 10.1007/978-981-13-0305-0.
  • [2] Y. Wang, X. Chen, and S.V. Konovalov, “Additive Manufacturing Based on Welding Arc: A low-Cost Method,” J. Surf. Investig., vol. 11, pp. 1317–1328, 2017, doi: 10.1134/S1027451017060210.
  • [3] D.H. Phillips, Welding Engineering: An Introduction, John Wiley & Sons, Ltd., 2016, pp. 177–186, (2016), doi: 10.1002/9781119191407.
  • [4] T. Chmielewski and D. Golański, “The role of welding in the remanufacturing process,” Weld. Int., vol. 29, no. 11, 2015, doi: 10.1080/09507116.2014.937604.
  • [5] Y. Nilsiam, P.G. Sanders, and M.J. Pearce, “Applications of Open Source GMAW-Based Metal 3-D Printing,” J. Manuf. Mater. Process., vol. 2, no 1, p. 18, 2018, doi: 10.3390/jmmp2010018.
  • [6] P. Cegielski, M. Ostrysz, W. Łacisz, M. Panas, and P. Kowalski, “New work on the use of MIG/MAG arc welding for 3D printing”, Weld. Tech. Rev., vol. 90, no. 1, pp. 43-47, 2018, doi: 10.26628/wtr.v90i1.851 (in Polish).
  • [7] N. Knezović and A. Topić, “Wire and arc additive manufacturing (WAAM) – a new advance in manufacturing,” in New Technologies, Development and Application. NT 2018. Lecture Notes in Networks and Systems, 2018, vol 42, pp 65–71, doi: 10.1007/978-3-319-90893-9_7.
  • [8] J. Liu, Y. Xu, Y. Ge, Yu, Z. Hou, and S. Chen, “Wire and arc additive manufacturing of metal components: a review of recent research developments,” Int. J. Adv. Manuf. Technol., vol.111, no. 1-2, pp. 149–198, 2020, doi: 10.1007/s00170-020-05966-8.
  • [9] P. Cegielski, A. Skublewska, P. Gawroński, M. Ostrysz, M. Dylewski, and M. Gajowniczek, “Robotized 3D printing of the machines parts with welding methods,” Weld. Tech. Rev., vol. 89, no. 1, pp. 39–42, 2017, doi: 10.26628/wtr.v89i1.724.
  • [10] C. Soares, Gas Turbines: A Handbook of Air, Land and Sea Applications, Oxford: Butterworth-Heinemann, 2014, pp. 670–708.
  • [11] P.M. Boyce, Gas Turbine Engineering Handbook. Butterworth-Heinemann, 2011, pp. 827–833.
  • [12] A.S Rangwala, Theory and Practice in Gas Turbines, New Academic Science, 2013, pp. 447–450.
  • [13] “Steam-turbine diaphragm repair strategies,” Combined Cycle Journal. [Online] Available: https://www.ccj-online.com/steam-turbine-diaphragm-repair-strategies/ (Accessed: 15. Dec. 2022)
  • [14] T. Ginter and O. Crabos, “Uprate Options for the MS6001 Heavy-Duty Gas Turbine GER-4217B (06/2010),” General Electric Company, 2010. [Online] Available: https://www.ge.com/content/dam/gepower-new/global/en_US/downloads/gas-new-site/resources/reference/ger-4217b-uprate-options-ms6001-heavy-duty-gas-turbine.pdf
  • [15] B.L. Henderson et al., “Treated turbine diaphragm and method for treating a turbine diaphragm,” U.S. Patent US10828732, Nov 10, 2020.
  • [16] A.M. Ostrowski et al., “Repair of gas turbine diaphragm,” U.S, Patent US11813708, Nov 14, 2023.
  • [17] “Ni-Resist Iron”, Castings PLC. [Online] Available: https://castings.plc.uk/company/materials/ni-resist-iron/ (Accessed: 6. Apr. 2021).
  • [18] Properties and Applications of Ni-Resist and Ductile Ni-Resist Alloys. Nickel Institute, 1998.
  • [19] AWS A5.15:1990 – Specification for Welding Electrodes and Rods for Cast Iron (2016), An American National Standard.
  • [20] J. Liu, Y. Xu, Y. Ge, Z. Hou, and S. Chen, “Wire and arc additive manufacturing of metal components: A review of recent research developments,” Int. J. Adv. Manuf. Technol., vol. 111, pp. 149–198, 2020, doi: 10.1007/s00170-020-05966-8.
  • [21] Z. Wang, S. Zimmer-Chevret, F. Leonard, and G. Abba, “Improvement strategy for the geometric accuracy of bead’s beginning and end parts in wire-arc additive manufacturing (WAAM),” Int. J. Adv. Manuf. Technol., vol. 118, no. 7-8, 118, pp. 2139–2151, 2022, doi: 10.1007/s00170-021-08037-8.
  • [22] M. Cai, Ch. Wu, and X. Gao, “The Influence of Arc Length Correction on Welding in CMT Welding,” IOP Conf. Ser.: Earth Environ. Sci., vol. 170 p. 042106, 2018, doi: 10.1088/1755-1315/170/4/042106.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-42231226-20bf-4d1a-8bd2-82bc964acfe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.