Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Microplastic pollution in urban water bodies is a growing environmental challenge with significant implications for ecosystems and human health. This study aims to characterize microplastic contamination in Jakarta’s Sunter River, Buaran River, and Marunda Estuary, which are crucial conduits for plastic waste into the marine environment. Using Raman spectroscopy, we conducted an extensive analysis of water, sediment, and biota samples from these sites to identify the types and sources of microplastic polymers present. Our findings reveal significant contamination, with polyethylene terephthalate (PET) and polypropylene (PP) being the most common polymers. The Sunter River had high levels of PET, primarily from discarded beverage bottles and food packaging, while the Buaran River was primarily contaminated with PP, commonly found in plastic containers, automotive parts, and textiles. In contrast, the Marunda Estuary showed a distinct pollution pattern, with a significant presence of foam particles likely originating from construction and packaging materials. This research demonstrates the effectiveness of Raman spectroscopy in precisely and consistently identifying microplastics, surpassing traditional visual inspection methods. By accurately determining the chemical composition of microplastics, Raman spectroscopy enhances our understanding of the origins and pathways of plastic pollution in urban environments. The study’s conclusions underscore the need for targeted waste management strategies to address specific polymer types and reduce their environmental impact. For example, increasing recycling efforts for PET bottles and minimizing the use of single-use plastics made from PP could significantly decrease the presence of these microplastics in water bodies. Furthermore, by elucidating the polymer composition of microplastics, our work contributes to a better understanding of the associated health risks, as different polymers interact differently with environmental toxins. However, this study has limitations. It focuses only on selected urban water bodies in Jakarta, and the findings may not be applicable to other regions. Despite these limitations, our research has practical value, as it can inform policy-making and the development of interventions to mitigate microplastic pollution in urban aquatic environments.
Wydawca
Rocznik
Tom
Strony
260--273
Opis fizyczny
Bibliogr. 70 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
- Center for Environmental Solution (CVISION), Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
- Center for Environmental Solution (CVISION), Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
- Center for Environmental Solution (CVISION), Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Civi Engineering Study Program, Faculty of Engineering, Universitas Sebelas Maret, Surakarta 57126, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
autor
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
- Center for Environmental Solution (CVISION), Universitas Pertamina, Jalan Sinabung II, Terusan Simprug, Jakarta, 12220, Indonesia
Bibliografia
- 1. Absher TM, Ferreira SL, Kern Y, Ferreira ALJr, Christo SW, Ando RA. 2019. Incidence and identification of microfibers in ocean waters in Admiralty Bay, Antarctica. Environ Sci Pollut Res 26, 292–298.
- 2. Almaviva S, Artuso F, Giardina I, Lai A, Pasquo A. 2022. Fast detection of different water contaminants by Raman spectroscopy and surface-enhanced Raman spectroscopy. Sensors 22.
- 3. Amin S, Strik D, van Leeuwen J. 2022. A multimethod approach to circular strategy design: Assessing extended producer responsibility scenarios through material flow analysis of PET plastic in Jakarta, Indonesia. J Clean Prod 367, 132884. https://doi.org/10.1016/j.jclepro.2022.132884
- 4. Araujo CF, Nolasco MM, Ribeiro AMP, RibeiroClaro PJA. 2018. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Res 142, 426–440. https://doi.org/10.1016/j.watres.2018.05.060
- 5. Arredondo-Navarro A, Flores-Cervantes DX. 2023. Microplastics in water and sediments: Sampling, detection, characterization methods & quality control-A review. Tecnol y Ciencias del Agua 14, 474–520.
- 6. Azizi A, Fairus S, Sari DAP. 2024. Isolation and characterization of polyethylene and polyethylene terephthalate-degrading bacteria from Jakarta Bay, Indonesia. Open Biotechnol J, 18.
- 7. Bashir I, Lone FA, Bhat RA, Mir SA. 2020. Concerns and threats of contamination on aquatic ecosystems BT – Bioremediation and biotechnology: sustainable approaches to pollution degradation. In: Hakeem KR, Bhat RA, Qadri H (eds). Springer International Publishing, Cham 1–26.
- 8. Buwono NR, Risjani Y, Soegianto A. 2021. Distribution of microplastic in relation to water quality parameters in the Brantas River, East Java, Indonesia. Environ Technol Innov 24, 101915. https://doi.org/10.1016/j.eti.2021.101915
- 9. Caljouw M, Nas PJM, Pratiwo MR. 2009. Flooding in Jakarta: Towards a blue city with improved water management. Bijdr tot taal-, land-en volkenkunde/Journal Humanit Soc Sci Southeast Asia 161, 454–484.
- 10. Clausen LPW, Hansen OFH, Oturai NB, Syberg K, Hansen SF. 2020. Stakeholder analysis with regard to a recent European restriction proposal on microplastics. PLoS One 15, e0235062.
- 11. Cordova MR, Bernier N, Yogaswara D, Subandi R, Wibowo SPA, Kaisupy MT, Haulussy J. 2023. Land-derived litter load to the Indian Ocean: a case study in the Cimandiri River, southern West Java, Indonesia. Environ Monit Assess 195, 1251. https://doi.org/10.1007/s10661-023-11831-4
- 12. Cordova MR, Ulumuddin YI, Purbonegoro T, Puspitasari R, Afianti NF, Rositasari R, Yogaswara D, Hafizt M, Iswari MY, Fitriya N, Widyastuti E, Harmesa, Lestari, Kampono I , Kaisupy M, Wibowo SPA, Subandi R, Sani SY, Sulistyowati L, Nurhasanah, Muhtadi A, Riani E, Cragg SM. 2022. Seasonal heterogeneity and a link to precipitation in the release of microplastic during COVID-19 outbreak from the Greater Jakarta area to Jakarta Bay, Indonesia. Mar Pollut Bull 181, 113926. https://doi.org/10.1016/j.marpolbul.2022.113926
- 13. Cowger W, Gray A, Christiansen SH, DeFrond H, Deshpande AD, Hemabessiere L, Lee E, Mill L, Munno K, Ossmann BE, Pittroff M, Rochman C, Sarau G, Tarby S, Primpke S. 2020. Critical Review of Processing and Classification Techniques for Images and Spectra in Microplastic Research. Appl Spectrosc 74, 989–1010. https://doi.org/10.1177/0003702820929064
- 14. Dalmau-Soler J, Ballesteros-Cano R, Boleda MR, Paraira M, Ferrer N, Lacorte S. 2021. Microplastics from headwaters to tap water: occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ Sci Pollut Res 28, 59462–59472. https://doi.org/10.1007/s11356-021-13220-1
- 15. Devereux R, Ayati B, Westhead EK, Jayaratneet R, Newport D. 2023. The great source microplastic abundance and characteristics along the river Thames. Mar Pollut Bull 191, 114965. https://doi.org/10.1016/j.marpolbul.2023.114965
- 16. Devi A, Hansa A, Gupta H, Syam K, Upadhyay M, Kaur M, Lajayer BA, Sharma R. 2023. Microplastics as an emerging menace to environment: Insights into their uptake, prevalence, fate, and sustainable solutions. Environ Res 229, 115922. https://doi.org/10.1016/j.envres.2023.115922
- 17. Gao GHY, Helm P, Baker S, Rochman CM. 2023. Bromine content differentiates between construction and packaging foams as sources of plastic and microplastic pollution. ACS ES&T Water 3, 876–884.
- 18. Gouin T, Ellis-Hutchings R, Thornton Hampton LM, Lemieux CL, Wright SL. 2022. Screening and prioritization of nano- and microplastic particle toxicity studies for evaluating human health risks – development and application of a toxicity study assessment tool. Microplastics and Nanoplastics 2, 2. https://doi.org/10.1186/s43591-021-00023-x
- 19. Hastuti AR, Lumbanbatu DTF, Wardiatno Y. 2019. The presence of microplastics in the digestive tract of commercial fishes off Pantai Indah Kapuk coast, Jakarta, Indonesia. Biodiversitas J Biol Divers 20.
- 20. Henny C, Suryono T, Rohaningsih D, Yoga GP, Sudarso J, Waluyo A. 2023. The occurrence of microplastics in the surface water of several urban lakes in the Megacity of Jakarta. IOP Conf Ser Earth Environ Sci 1201, 12023. https://doi.org/10.1088/1755-1315/1201/1/012023
- 21. Jagatee S, Priyadarshini S, Rath CC, Das AP. 2024. Synthetic microfiber: An enduring environmental problem linked to sustainable development BT – Renewable energy generation and value addition from environmental microfiber pollution through advanced greener solution. In: Das AP, Behera ID, Das NP (eds). Springer Nature Switzerland, Cham, 93–112.
- 22. Johannes HP, Kojima M, Iwasaki F, Edita EP. 2021. Applying the extended producer responsibility towards plastic waste in Asian developing countries for reducing marine plastic debris. Waste Manag Res 39, 690–702. https://doi.org/10.1177/0734242X211013412
- 23. Kapp KJ, Yeatman E. 2018 Microplastic hotspots in the Snake and Lower Columbia rivers: A journey from the Greater Yellowstone Ecosystem to the Pacific Ocean. Environ Pollut 241, 1082–1090. https://doi.org/10.1016/j.envpol.2018.06.033
- 24. Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn J-M, Voit B. 2016. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem 408, 8377–8391. https://doi.org/10.1007/s00216-016-9956-3
- 25. Karlsson TM, Kärrman A, Rotander A, Hassellöv M. 2020. Comparison between manta trawl and in situ pump filtration methods, and guidance for visual identification of microplastics in surface waters. Environ Sci Pollut Res 27, 5559–5571. https://doi.org/10.1007/s11356-019-07274-5
- 26. Kjeldsen P, Scheutz C. 2003. Short-and long-term releases of fluorocarbons from disposal of polyurethane foam waste. Environ Sci Technol 37, 5071–5079
- 27. Kunz A, Schneider F, Anthony N, Lin H-T. 2023. Microplastics in rivers along an urban-rural gradient in an urban agglomeration: Correlation with land use, potential sources and pathways. Environ Pollut 321, 121096. https://doi.org/10.1016/j.envpol.2023.121096
- 28. Kuo JF, Dodd KM, Chen CL, Horvath RW. 1997. Evaluation of tertiary filtration and disinfection systems for upgrading high‐purity oxygen‐activated sludge plant effluent. Water Environ Res 69, 34–43.
- 29. Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Aslam HMU, Nadeem S, Javed M, Othman MHD, Goh HH, Chewet KW. 2023. Source, occurrence, distribution, fate, and implications of microplastic pollutants in freshwater on environment: A critical review and way forward. Chemosphere 325, 138367. https://doi.org/10.1016/j.chemosphere.2023.138367
- 30. Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, Shruti VC. 2020. Review of current trends, advances and analytical challenges for microplastics contamination in Latin America. Environ Pollut 267, 115463. https://doi.org/10.1016/j.envpol.2020.115463
- 31. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. 2015. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull 100, 82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026
- 32. Levermore JM, Smith TEL, Kelly FJ, Wright SL. 2020. Detection of microplastics in ambient particulate matter using raman spectral imaging and chemometric analysis. Anal Chem 92, 8732–8740. https://doi.org/10.1021/acs.analchem.9b05445
- 33. Li L, Liu D, Song K, Zhou Y. 2020. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water. Mar Pollut Bull 150, 110724. https://doi.org/10.1016/j.marpolbul.2019.110724
- 34. Li T, Liu K, Tang R, Liang J-R, Mai L, Zeng EY. 2023. Environmental fate of microplastics in an urban river: Spatial distribution and seasonal variation. Environ Pollut 322, 121227. https://doi.org/10.1016/j.envpol.2023.121227
- 35. Li Z, Wang J, Li D. 2016. Applications of Raman spectroscopy in detection of water quality. Appl Spectrosc Rev 51, 333–357. https://doi.org/10.1080/05704928.2015.1131711
- 36. Liaqat S, Hussain M, Riaz J. 2024. Entry of the microplastics in food chain and food web BT - microplastic pollution. In: Shahnawaz M, Adetunji CO, Dar MA, Zhu D (eds). Springer Nature Singapore, Singapore, 289–306.
- 37. Lin F, Ren H, Qin J, Wang M, Shi M, Li Y, Wang R, Hu Y. 2024. Analysis of pollutant dispersion patterns in rivers under different rainfall based on an integrated water-land model. J Environ Manage 354, 120314. https://doi.org/10.1016/j.jenvman.2024.120314
- 38. Liu W, Liao H, Wei M, Junaid M, Chen G, Wang J. 2024. Biological uptake, distribution and toxicity of micro(nano)plastics in the aquatic biota: A special emphasis on size-dependent impacts. TrAC Trends Anal Chem 170, 117477. https://doi.org/10.1016/j.trac.2023.117477
- 39. Liu Z, Huang Q, Chen L, Li J, Jia H. 2022 Is the impact of atmospheric microplastics on human health underestimated? Uncertainty in risk assessment: A case study of urban atmosphere in Xi’an, Northwest China. Sci Total Environ 851, 158167. https://doi.org/10.1016/j.scitotenv.2022.158167
- 40. Lusher AL, Bråte ILN, Munno K, Hurley RR, Welden NA. 2020. Is it or isn’t it: The importance of visual classification in microplastic characterization. Appl Spectrosc 74, 1139–1153. https://doi.org/10.1177/0003702820930733
- 41. Lv L, Yan X, Feng L, Jiang S, Lu Z, Xie H, Sun S, Chen J. 2021. Challenge for the detection of microplastics in the environment. Water Environ Res 93, 5–15. https://doi.org/10.1002/wer.1281
- 42. Mahmud A, Wasif MM, Roy H, Mehnaz F, Ahmed T Pervez MdN, Naddeo V, Islam MdS. 2022. Aquatic microplastic pollution control strategies: Sustainable degradation techniques, resource recovery, and recommendations for Bangladesh. Water 14
- 43. Matluba M, Ahmed MK, Chowdhury KMA, Khan N, Ashiq MdAR, Islam MS. 2023. The pervasiveness of microplastic contamination in the gastrointestinal tract of fish from the western coast of Bangladesh. Mar Pollut Bull 193, 115145. https://doi.org/10.1016/j.marpolbul.2023.115145
- 44. Merlino S, Locritani M, Bernardi G, Como C, Legnaioli S, Palleschi P, Abbate M. 2020. Spatial and temporal distribution of chemically characterized microplastics within the protected area of Pelagos sanctuary (NW Mediterranean Sea): Focus on Natural and Urban Beaches. Water 12.
- 45. Nava V, Frezzotti ML, Leoni B. 2021. Raman spectroscopy for the analysis of microplastics in aquatic systems. Appl Spectrosc 75, 1341–1357. https://doi.org/10.1177/00037028211043119
- 46. Painter PC, Watzek M, Koenig JL. 1977. Fourier transform infra-red study of polypropylene. Polymer (Guildf) 18, 1169–1172. https://doi.org/10.1016/0032-3861(77)90114-8
- 47. Perumal K, Muthuramalingam S. 2022. Global sources, abundance, size, and distribution of microplastics in marine sediments - A critical review. Estuar Coast Shelf Sci 264, 107702. https://doi.org/10.1016/j.ecss.2021.107702
- 48. Ribeiro-Claro P, Nolasco MM, Araújo C. 2017. Chapter 5 – characterization of microplastics by Raman spectroscopy. In: Rocha-Santos TAP, Duarte ACBT-CAC (eds) Characterization and Analysis of Microplastics. Elsevier 119–151.
- 49. Saravanan K, Kiruba-Sankar R, Khan MJ Hashmi AS, Velmurugan A, Haridas H, Prakasan S, Deepitha RP, LaxmiMNV. 2021. Baseline assessment of marine debris with soil, sediment, and water quality characteristics from the fish landing centres of South Andaman, Andaman archipelago, India. Mar Pollut Bull 172, 112879. https://doi.org/10.1016/j.marpolbul.2021.112879
- 50. Sari MM, Andarani P, Notodarmojo S, Harryes RK, Nguyen NM, Yokota K, Inoue T. 2022. Plastic pollution in the surface water in Jakarta, Indonesia. Mar Pollut Bull 182, 114023. https://doi.org/10.1016/j.marpolbul.2022.114023
- 51. Sharma S, Chatterjee S. 2017. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res 24, 21530– 21547. https://doi.org/10.1007/s11356-017-9910-8
- 52. Sianipar IMJ, Lee C-H. 2024. Reshaping marine debris management post-COVID-19: Integrating adaptive attributes for enhanced community engagement. Ocean Coast Manag 253, 107149. https://doi.org/10.1016/j.ocecoaman.2024.107149
- 53. Sianipar IMJ, Suryawan IWK, Tarigan SR. 2022. The challenges and future of marine debris policy in Indonesia and taiwan case studies. J Sustain Infrastruct 1, 56–62.
- 54. Sugiura M, Takada H, Takada N, Mizukawa K. 2021. Microplastics in urban wastewater and estuarine water: Importance of street runoff. Environ Monit Contam Res 1, 54–65.
- 55. Suryawan IWK, Lee C-H. 2024a. Achieving zero waste for landfills by employing adaptive municipal solid waste management services. Ecol Indic 165, 112191. https://doi.org/10.1016/j.ecolind.2024.112191
- 56. Suryawan IWK, Lee C-H. 2024b. Exploring citizens’ cluster attitudes and importance-performance policy for adopting sustainable waste management practices. Waste Manag Bull 2, 204–215. https://doi.org/10.1016/j.wmb.2024.07.011
- 57. Suryawan IWK, Suhardono S, Lee C-H. 2024. Boosting beach clean-up participation through community resilience hypothetical scenarios. Mar Pollut Bull 207.
- 58. Takahashi T, Liu Z, Thevar T, Burns N, Mahajan S, Lindsay D, Watson J, and Thornton B. 2020. Identification of microplastics in a large water volume by integrated holography and Raman spectroscopy. Appl Opt 59, 5073–5078.
- 59.Teboul E, Orihel DM, Provencher JF, Drever MC, Wilson L, Harrison AL. 2021. Chemical identification of microplastics ingested by Red Phalaropes (Phalaropus fulicarius) using Fourier Transform Infrared spectroscopy. Mar Pollut Bull 171, 112640. https://doi.org/10.1016/j.marpolbul.2021.112640
- 60. Thornton Hampton LM, Bouwmeester H, Brander SM, Coffin S, Cole C, Hermabessiere L, Mehinto AC, Miller E, Rochman CM, Weisberg SB. 2022. Research recommendations to better understand the potential health impacts of microplastics to humans and aquatic ecosystems. Microplastics and Nanoplastics 2, 18. https://doi.org/10.1186/s43591-022-00038-y
- 61. Tirkey A, Upadhyay LSB. 2021. Microplastics: An overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170, 112604. https://doi.org/10.1016/j.marpolbul.2021.112604
- 62. Tyagi M. 2024. Water contamination and impacts of synthetic microfibers pollutants to the global ecosystem BT - Sustainable microbial technology for synthetic and cellulosic microfiber bioremediation. In: Das AP, Behera ID, Bhanja D (eds). Springer Nature Switzerland, Cham, 157–181.
- 63. Uogintė I, Pleskytė S, Pauraitė J, Lujanienė G. 2022. Seasonal variation and complex analysis of microplastic distribution in different WWTP treatment stages in Lithuania. Environ Monit Assess 194, 829. https://doi.org/10.1007/s10661-022-10478-x
- 64. Van Crevel R. 2016. Bio-based food packaging in sustainable development. Food Agric Organ United Nations.
- 65. Vinay Kumar BN, Löschel LA, Imhof HK. 2021. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ Pollut 269, 116147. https://doi.org/10.1016/j.envpol.2020.116147
- 66. Widagdo S, Anggoro SA. 2022. Combating ocean debris: Marine plastic pollution and waste regulation in Indonesia. Int J Mar Coast Law 37, 458–492.
- 67. Xu H, Hu Z, Sun Y, Sun Y, Xu J, Huang L, Yao W, Yu Z, Xie Y. 2024. Microplastics supply contaminants in food chain: non-negligible threat to health safety. Environ Geochem Health 46, 276. https://doi.org/10.1007/s10653-024-02076-2
- 68. Yang J. 2024. Waste accumulation in Jakarta’s slums: Neoliberal flows of waste distribution. Geoforum 150, 103994. https://doi.org/10.1016/j.geoforum.2024.103994
- 69. Yaranal NA, Subbiah S, Mohanty K. 2021. Distribution and characterization of microplastics in beach sediments from Karnataka (India) coastal environments. Mar Pollut Bull 169, 112550. https://doi.org/10.1016/j.marpolbul.2021.112550
- 70. Zada L, Leslie HA, Vethaak AD, Tinnevelt G.H., Jansen J.J., de Boer J.F., Ariese F. 2018. Fast microplastics identification with stimulated Raman scattering microscopy. J Raman Spectrosc 49, 1136–1144. https://doi.org/10.1002/jrs.5367
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-422191e5-68b6-4653-ab9f-911fd09f4e46
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.