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WITH VARIABLE PARAMETERS 

 
 
Various mechanical systems are characterized with flexible  joints. Exemplary this class 

of systems are the conveyers motors, the industrial robots and the cranes. The mechanical 
properties of those objects can be approximated by two-mass system. The paper presents 
the time-optimal input shaping methods for two-mass system. The control signal has to 
reach the set value of displacement in the shortest time, without of rising the mechanical 
oscillations. It was established, that the summary moment of inertia is constant, but division 
of mass is changing. For this case robustness for wide range of parameters deviations was 
analyzed. The model included PMSM motor with limited dynamics of current regulation. 
The research were conducted in Matlab/Simulink enviroment. 
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1. INTRODUCTION 

 
Many mechanical systems in can be characterized with resonant characteristics. 

This kind of systems is represented by the cranes [1], multi-mass systems [2][3], the 
conveyers and other systems.  

Usually one of the requirements for the control system is to drive the machine 
without of  vibrations. One of the control method used to complete this requirement is 
input shaping. Very often the jerk is limited, what effects with oscillations limitation, 
but leads to significant enlargement of reaction time. The paper shows another method, 
based on input shaping leading to prevent the oscillations. Simultaneously the 
dynamics parameters of driving system are maintained. The subject of the paper is the 
analysis of the robustness of this types of control methods for wide range of parameters 
deviations.  

 
2. SIMULATION MODEL 

 
The research was based on two-mass system with flexible joint. The system is 

shown on Figure 1. 
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Fig. 1. Two-mass system 

 
To build the simulation model of system it is necessary to have the physical 

equations describing it. The torque motor rotor Jm is equal to: 
 sem TTT  ,         (2.1) 

where Te is the electromagnetic torque and TS is the torque transmitted through the 
shaft. For the load side mass, analogically: 

 LSl TTT  ,         (2.2) 
where Tl is the torque of second mass, TL is the total torque of load including 

friction. The torque TS can be calculated from equation  
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where θL and θm are the positions of both masses, and kS and ςS are the coefficients 
of springiness and damping of the shaft respectively. The motor side and load side 
position are determined from: 
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3. INPUT SHAPING 

 
3. 1. Command generation 

 
The research presented in following chapters are based on impulse commands for 

vibration reduction. The base of command generation is to replace a single burst of 
force with multiple lower bursts, that summary supplies same amount of energy, but in 
smaller portions, applied in proper time. Each input signal can be calculated and 
shaped as a convolution of determined impulses. The amplitudes and times are possible 



Robust input shaping for two-mass system with variable parameters 
 
 

211 

to calculate, if the basic characteristic values (like Td – period of damped vibration and 
ωn – natural vibration pulsation) of the system are known. If the ratio R of load inertia 
to motor inertia is defined R=JL/Jm  then the natural vibration pulsation is determined 
by  

R1
J
k

R1
L

S
an         (3.1) 

where ωa is the anti-resonance pulsation. The damping of the system is related to 
internal damping of the shaft ds. 
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According to equations presented in [1], the times and amplitudes of impulses can 
be presented as: 
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If the model of two-mass system is known, the ωd and ωn are possible to 

calculate [2]. Equations shown above will provide the time-optimal control for a 
specific Td, but if any of parameters will be changed, the control will not be optimal 
any more. This problem can be solved by modifications of the control algorithm. The 
modifications are shown in chapters 3.2 and 3.3. Robustness of the solution is shown in 
part 4.  

 
3.2. Robust input shaping 

 
The solution shown in part 3.1 is working really good if every part of process does 

not contain any uncertainties or inaccuracies. If the resonant frequency would change, 
one of the impulses will be set in not exact time or with not exact amplitude the whole 
process of control without of vibrations will fail. Additional problems, like uncertain 
parameters, will cause vibrations of whole system. To omit this problem it’s necessary 
to use the robust version of the control algorithm. The first algorithm of robust control 
with input shaping was developed by Singer, Signhose and Seering [4]. The shaper was 
designed by requiring the partial derivative of the residual vibration to be equal to zero 
at the modeling frequency. 

Enforcing this constraint has the effect of keeping the vibration near zero when the 
frequency starts to differ from the modeling frequency. The robust shaper is the 
simplest way to solve problem of uncertain parameters of the system. If all of the 
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parameters are nearly constant during the system exploitation and research this solution 
is usually sufficient to control the system with insignificant vibrations.  

The robust shaper can be described with equations: 
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The shaper described with equation (3.5) will cause vibrations at level not bigger 
than 5% for modeling frequency [1], but will provide robustness of the control.  

 
3.3. Super-robust input shaping 

 
The solution shown in part 2.2 works well if the parameters of the systems are not 

changing significantly during the exploitation. To omit this limitation the super-robust 
shaper has to be used.  

The situation, when parameters of the system are changing in a wide range can be 
found in various real systems. For example the moment of inertia of an empty and fully 
loaded crane can be even hundreds time smaller. When the moment of inertia is 
changing also the resonant frequency is varying. In situations like this the solutions 
shown in parts 3.1 and 3.2 will be insufficient. The method of projecting the super-
robust shapers is called “multi-hump EI shapers”. The input is divided into many small 
impulses convolution what effects with broaden the range of proper work of the control 
system. The main problem of the method is to select the frequency, that will be treated 
as the basis (modeling) frequency. The frequency of resonations will be changing with 
the parameters. The modeling frequency can be selected for example as the middle of 
the expected range.  If the damping coefficient is very low, the super-robust shaper can 
be described with equation: 
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where Td is  the period of modeling frequency.  
 

4. SIMULATION TEST 
 
The simulation tests were executed at the model described in section 2. To check 

the robustness of shapers the resonant frequency of the system has to be modified. To 
change the frequency the moments of inertia has to be modified. The sum of moments 
of inertia is constant and equal to the moment of inertia of single mass system. The 
moments of inertia are equal: 

1R
1JJ TM 

          (4.1) 
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1R
RJJ TL 

          (4.2) 

where JL is the moment of inertia of load, JM is the moment of inertia of the machine 
and JT is sum of moments of inertia of both masses. R is the coefficient of mass 
division.  

The test was based on supplying the torque to the system. The torque was selected 
to obtain the time-optimal movement for the reference system with non-flexible joint 
between the masses. The system was modeled as a single, rotating mass, characterized 
by the moment of inertia JT. The control task was to rotate the mass by 40 rad, by speed 
limitation to 100 rad/s. The movement can be divided into three parts: acceleration, 
full-speed driving and deceleration. The reference and dual-mass characteristics were 
compared.  

Figure 2 shows the input torque characteristics for selected input shapers. The time 
of movement was extended from 0.2 s. (for simple input shaper) up to 0.8 s (for the 
robust shapers). 

 
 

Fig. 2. Input torque for shapers 
 
The shapers were calculated for the nominal situation, where the moments of inertia 

of drive and load are equal (R = 1). Afterwards, the solutions robustness for mass 
division changes was checked in range between R = 0.2 up to R = 5. 

Figure 3 shows the characteristics for R = 1. The input shaper works properly, any 
significant oscillations do not appear. At right column the final phase of movement was 
shown. For the simple input shaper some small oscillations appear, for robust and super 
robust shaper oscillations are equal to zero. To compare the results, figure 4 presents 
the R=5 case. For every shaper oscillations appear, but for the robust and super-robust 
shapers are less and less significant. For R = 0.2 same conclusions can be set. 

As the criteria of robustness the maximal difference between position of the 
machine and the load and the single mass was selected. The characteristics are shown 
at figure 5.  
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The characteristics shown on figure 5 confirms the theoretical deliberations 
described in part 3. The differences between all of strategies for the model frequency 
are not significant. If the frequency is deviating, the robustness is becoming more 
important. For both criteria the super-robust strategy is giving the best results. The 
simplest strategy will be sufficient for clearly specified model without of uncertainties.  
Applying the robust and super robust input shapers insignificantly enlarges the 
movement time, but the oscillations amplitude reduction is pointing. 
 

 
 

Fig. 3. Speed and position characteristics for various input shapers in case R = 1;  
a) whole movement, b) final phase 

 

 
 

Fig. 4. Speed and position characteristics for various input shapers in case R = 5;  
a) whole movement, b) final phase 
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5. CONCLUSION  
 
The research has confirmed high robustness of presented methods of the input 

shaping. Those methods can be characterized by a small computational complexity and 
simple on-line realization. Approximated parameters  of objects are sufficient to project 
the shaper. Shaping of closed-loop regulation signals for selected objects will be the 
subject of future research. 

 

 
 

Fig. 5. Difference of the angular position between machine, load and single mass 
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