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ABSTRACT  

There are three well-established detecting methods for cycle slip error, which are: Doppler 

measurement method, Phase-Code differencing method, and Phase-Phase Differencing 

Method. The first method depends on the comparison between observables and the fact 

that Doppler measurements are immune to cycle slip error. This method is considered as 

the most precise method for cycle slip detecting, because it succeed in detecting and 

predicting the smallest cycle slip size (1 cycle) in case the local oscillator has low bias. 

The second method depends on the comparison between observables (phase and code) and 

the code measurements are immune to the cycle slip error. But this method can’t detect 

or predict cycle slip size smaller than 10 cycles, because the code measurements have 

high noise. The third method depends on the comparison between observables (phase 1 and 

phase 2) and the phases measurements that have low noise. But this method can’t detect 

or predict cycle slip size smaller than 5 cycles, because the ionospheric change might 

have a high variation.  

For enhancing the precision of the last two methods in detecting the smallest cycle slip 

which size reaches 1 cycle, a new algorithm was developed in this research to determine 

the change in the ionospheric values and the code bias from epoch to epoch. That is 

done by solving all observables equations by least square technique. This modification 

on these methods succeed in detecting and predicting cycle slips of size of 1 cycle. 

Keywords: 

GPS, Cycle slip, Phase-Code differencing, Phase-Phase differencing, Doppler measurements. 



AHMED A. ELASHIRY, MOHAMED A. YOUSSEF, MOHAMED A. ABDEL HAMID 

32 ANNUAL OF NAVIGATION 

 INTRODUCTION 

Global Positioning System (GPS) is a satellite based navigation and sur-

veying system for determining the precise position and time, using radio signals 

from the satellites, in real-time or post-processing mode [Ren et al. 2011]. It 

consists of a constellation of 32 satellites in six different orbits which give the 

information of the position of the GPS receiver user. If there are four or more 

GPS satellites in unobstructed line of sight with the receiver, the precise spatial 

co-ordinates can be obtained [Dawod, 1991]. Each GPS satellite transmits two 

carrier phase: L1 = 1575.42 MHz; and L2 = 1227.60 MHz modulated with two types 

of codes and a navigation message. The L1 signal is modulated with a precise 

(P) code, known also as the Precise Positioning Service (PPS), and a coarse acqui-

sition (C/A) code, which is known also as the Standard Positioning Service 

(SPS); the L2 signal is modulated with P code only [Dawod, 1991; Raju, 2004]. 

This means the GPS carrier phase observations quality play an important role in high 

precision GPS static or kinematic positioning. However, due to internal tracking 

problems of GPS receiver or signal interruption of the antenna from the satellite, 

the continuous original carrier phase observations are destroyed, generating cycle slips 

and gross errors [Wu et al. 2010]. The main causes of the cycle-slip are listed 

below [Kim, 2012]: 

1. Obstructions of the satellite signal due to trees, buildings, bridges, moun-

tains, etc. 

2. Low signal-to-noise ratio (SNR) or alternatively carrier-to-noise-power-density 

ratio (C/N0) due to bad ionospheric conditions, multipath, high receiver dy-

namics, or low satellite elevation angle. 

3. Failure in the receiver software which leads to incorrect signal processing. 

The cycle slip is a sudden jump in the phase observations as shown in 

Figure 1 [Goad, 1985], and it may be as small as one or a few cycles, or contain 

millions of cycles, which directly affect the GPS positioning precision. Therefore, 

the precise detecting and predicting for the gross errors and cycle slips is an im-

portant pre-processing step in high precision GPS carrier phase positioning and 

applications [Wu et al. 2010; Goad, 1985]. 
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Fig. 1. Examples of cycle slips in observable data (L1) [source: Goad, 1985] 

OBSERVATIONS DATA 

Many cycle-slip detection methods have been proposed since the early 

1980s [Goad, 1985] established the first cycle slip predicting method based on 

ionospheric residual (PIR). Bastos et al. studied Kalman filtering technique for 

filtering observables data from cycle slip to improve the positioning accuracy 

[Wu et al., 2010]. Also Kleusberg et al. established a new approach for cycle slip 

predicting based on high-order differencing concept [Seeber, 2003]. Recently, 

several new methods have been proposed for cycle slip detection based on com-

parisons between the GPS measurements, based on high-order differencing concept, 

where [Dai, 2012] studied all GPS measurements (phases and codes) and the esti-

mated Doppler shift in the RINEX observations file and concluded that the Doppler 

measurement method is the most precise one. From his study, many detected 

methods were established which are; Phase-Code differencing method, Phase-Phase 

Differencing Method and Doppler measurement method. 
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Later [Cai et al., 2013] was developed a new approach for cycle slip de-

tecting and repairing under high ionospheric activity using undifferenced dual- 

-frequency GPS carrier phase observations with new algorithms. These algorithms 

integration was allowed uniquely detecting and determining for the cycle slips 

(≥ 5 cycles), even under high ionospheric activities, and Banville et al. [Banville 

et al., 2012] studied the decoupled-clock model to improve cycle-slip correction 

capabilities and use it in single frequency point precise positioning (PPP) to 

improve the positioning results. Implemented Doppler-aided cycle slip detecting 

and repairing method, using a simplified oscillator model with some modifica-

tion to avoid the influence of the local oscillator bias was proposed by Ren et al. 

[Ren et al., 2011] which lead to high precision in predicting and repairing the 

cycle slips at real time kinematics positioning method for size equal 1 cycle. 

Another solution was developed by Liu [Liu, 2010] with a new automated 

cycle slip detection and repair method that is based on only one single dual-frequency 

GPS receiver. This method used the ionospheric total electron contents (TEC) rate 

(TECR) and Melbourne-Wübbena wide lane (MWWL) linear combination to 

uniquely determine any cycle slip even under very high level of ionospheric 

activities and on both L1 and L2 frequencies. In [Wu et al., 2010] a new ap-

proach depended on using three groups of uncorrelated dual-frequency observation 

was established. This approach helped on repairing and detecting various real-time 

cycle slips and gross error under the long sampling condition. 

Zhang and Li in the cycle of publications [Zhang and Li, 2012; Li et al., 

2013; Li et al., 2014] has propose method for rapid ambiguity fixing in PPP to 

avoid a long re-initialization time. In these method the predicted atmospheric 

delays is use to correct the observations which suffer from signal interruptions, 

so real-time PPP with integer ambiguity fixing becomes more feasible in practice. 

The observational data which processed in this research was taken from 

master thesis work for a demonstrator in Mining and Metallurgy Department in 

Assiut University. The collected data was for two fixed points called (C and R) 

at two different places in Assiut city in Egypt (Fig. 2). They were observed by 

GPS receiver (ASHTECH A-12). Data were collected with the mask angle of 12, 

where it is the optimum value of elevation mask angle [Yousef, 2004], epoch 

interval = 1 sec, where it is the optimum interval [Yousef and Ragheb, 2002] and 

occupation period > 1 hr. The coordinates of this point are shown in Table 1. 
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Table 1. The coordinates of fixed points C and R 

Coordinate 

frame 

Point 

name 
   

ECEF frame 

X, Y and Z 

Point C 4847990.25 2944869.44 2906897.90 

Point R 4857809.62 2938766.27 2896650.05 

Geodetic frame  

(WGS 84)  

Lat, Long, helip 

Point C 27o 17’ 25.06754”N 31o16’34.40477”E 128.346 

Point R 27o 11’11.23584”N 31o 10’19.69518”E 90.848 

Old Egypt 1906 

E, N, horth 
Point C 642190.7 509720.12 115.612 

 

 

Fig. 2. The studied area 

SINGLE DIFFERENCE PROCESS 

Firstly, cycle slip count and place must be determined in taking sample 

in our observations to evaluate the performance of the studied methods in detecting 

it. The theoretical solution is to determine the ambiguity value, but this task isn’t 

trivial. So the other way depends on removing this unknown ambiguity value by 

using the Single Difference (SD) in time between single receiver and single satel-

lite at two constitute epochs (Fig. 3), where this technique removes the carrier 
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phase ambiguity term, because this ambiguity term is constant for the entire 

observation session [Bossler et al., 2002]. Also the SD technique reduces the 

ephemeris, ionospheric, and tropospheric errors, if epoch interval is short (less 

than 1min) [Ogaja, 2011]. 

 

 

Fig. 3. Single Difference technique (one receiver observing one satellite at two epochs) 
 

At single difference technique the givens data are the phase observations 

from one satellite (s) to one receiver (r) at two different epochs (t1 and t2) [Ogaja, 

2011]. The difference between two consecutive epochs is as follows. 

 Phase equation at epoch t1: 

∅Li

t1 = ρt1 + c[δtr
t1 − δts

t1] + Tt1 − It1 + ERtt1 + λLi
NLi

t1 + Mpatht1 + εp
t1 (1) 

 Phase equation at epoch t2: 

∅Li

t2 = ρt2 + c[δtr
t2 − δts

t2] + Tt2 − It2 + ERtt2 + λLi
NLi

t2 + Mpatht2 + εp
t2 (2) 

 The difference between (1) and (2) is as follows: 

∆∅Li
= ∆ρ − ∆(c ∗ δts) + ∆T − ∆I + ∆ERt 

Or   ∆∅Li
− ∆ρ = ∆(c ∗ δts) + ∆T − ∆I + ∆ERt                         (3) 
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where: 

ϕLi — the measured phase of Li (L1 or L2), cycle; 

ρ — true geometric range, m; 

c — speed of light, m/s; 

δtr — receiver clock error, sec; 

δts — satellite clock error, sec; 

T — tropospheric delay, m; 

I — tropospheric delay, m; 

ERt — earth rotation error, m;  

Δ — single difference operator; 

Mpath — the multipath error, m; but, in this research, the observing must be 

done in an open area, so ‘Mpath‘ error is approximately zero. 

 

The equation (3) is a condition equation to identify if the observations 

have cycle slip error or not; and to test the precision of the proposed detected 

method in this research. But firstly the range of each error change between two 

constitutive epochs must be known, which are ∆ts, ∆T, ∆I, and ∆ERt; that by es-

timating the values of these errors. The equations of these errors are listed below. 

 The satellite error (ts) can be estimated from the equation (4) [Ashby, 2003]:  

ts = af0 + af1(Ttr − toe) + af2(Ttr − toe)
2 + ∆rel                 (4) 

∆rel= e √a (sinEk)                                            (5) 

where: 

af0, af1, af2 — coefficients are available in the navigation message file; 

Ttr — transmission time; 

toe — ephemeris reference time; 

∆rel — relativistic correction; 

E — eccentricity; 

a — orbital semi-major axis. 

 

 The tropospheric error (T) can be predicted using Hopfield model (6) [Chaib 

et al., 2007]: 

T =  
𝐾𝑑

 𝑠𝑖𝑛(𝐸𝑙 2+ 1.904×10−3)2
 + 

 𝐾𝑤

𝑠𝑖𝑛(𝐸𝑙 2+ 0.6854×10−3)2
                       (6) 
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𝐾𝑑 =  1.55208 × 10−4  ×  𝑃𝑎𝑚𝑏 × 
40136.0 +(148.72 ∗ 𝑇𝑎𝑚𝑏)

𝑇𝑎𝑚𝑏 + 273.16
           (7) 

𝐾𝑤 =  −0.282 ×
 𝑃𝑣𝑎𝑝

(𝑇𝑎𝑚𝑏 + 273.16)
  +  8307.2 × 

𝑃𝑣𝑎𝑝

(𝑇𝑎𝑚𝑏 + 273.16)2
        (8) 

where: 

Tamb — ambient air temperature, Cel;  

Pamb — ambient air pressure, kpa;  

Pvap — ambient vapor pressure, kpa;  

El — the satellite vehicle's elevation in radian;  

Kd and Kw — are the dry an wet components respectively. 

 

 The ionospheric error (I) can be predicted using the approximately form of 

Klobuchar’s model (9) [Chaib et al., 2007; Klobuchar, 1987]: 

I = 𝑡𝑖𝑜𝑛 = [1 + 16 × (0.53 − 𝐸𝐿)3 × 5 × 10−9]                 (9) 

 The earth rotation error (ERt) can be estimated from the following equation 

(10) [19]: 

ERt =
𝜔𝐸

𝑐
(𝑋𝑠𝑎𝑡𝑌𝑟𝑒𝑐−𝑌𝑠𝑎𝑡𝑋𝑟𝑒𝑐)                                 (10) 

where: 

E — earth turn rate 7.2921151467×10-5, rad/sec;  

Xsat and Ysat — satellite horizontal coordinates, m;  

Xrec and Yrec — receiver horizontal coordinates, m. 

 

By applying the previous equations on our observations of satellite PRN 6, 

as an example, at ‘Point C and Point R’, taking sample size (360 epochs) with 

observation epoch interval 1 second, the values of  ts, T, I, and ERt can be de-

termined. Then the values of change of each error per 1 sec (error difference), 

the average value and standard deviation value could be estimated (Table 2). 

The relations of these difference values for each error with time and its histo-

gram are shown in Figure 4. 

From Figure 4 it was found that the resultant error differences from each 

estimated error have a normal distribution, so the maximum allowable value for 

each error is equal the mean value plus or minus three of the standard deviation 

value [www.3sigma]. Then the maximum value of the right part of (3) can be 

estimated and it would equals about 15.02 cm (approximately 1 cycle). 
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Table 2. The average value and standard deviation of each error change 

 ∆ts, ∆T, ∆I  and ∆ERt for 1 sec 

Points 
  ∆𝐭𝐬, m/sec ∆𝐓, m/sec ∆𝐈 , m/sec ∆𝐄𝐑𝐭, m/sec 

μ σ μ σ μ σ μ σ 

Point C 0.015 0.0035 0.0012 0.0005 0.03 0.012 0.0075 0.005 

Point R 0.012 0.005 0.0016 0.0003 0.05 0.016 0.006 0.004 

 

    

    

Fig. 4. The relations between each error difference / 1sec in time and their histograms 

‘Taking Point C as example’ 

 

The cycle slip error, place and value, on our testing observations data 

can be detected easily by applying SD equation (3). Where the receiver coordinate 

is known and the precise geometric distance between the receiver and satellite 

can be estimated at any epoch by using the precise ephemeris navigation data. 

So if the value of the left part of (3) is higher than 1 cycle; then the cycle slip 

error is founded. 

The following table shows the detected cycle slip error using Single dif-

ference technique at five observation minutes (interval 1 second), from the phase 

observations of satellite PRN 6, at point C and point R (Table 3). 
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Table 3. The detected count of cycle slip error in five minutes of observation data  

(interval 1 second) at point C and point R 

Point C  Point R 

Epoch 
Error 

status 

Cycle 

Slip 

Count 

 Epoch 
Error 

Status 

Cycle Slip 

Count 

1–42 Yes >100000  1–46 Yes >100000 

43–46 Yes 1500  47–48 Yes 2000 

47–49 Yes 400  49–52 Yes 250 

50–80 No 0  53–92 No 0 

81–84 Yes 10  93–94 Yes 10 

85–117 No 0  95–123 No 0 

118–119 Yes 5  124–127 Yes 5 

120–122 Yes 3  128–193 No 0 

123–128 Yes 2  194–196 Yes 1 

129–246 No 0  197–230 No 0 

247–250 Yes 1  231–235 Yes 1 

251–300 No 0  236–300 No 0 

DETECTED METHODS 

There are many methods for cycle slip detecting and predicting, but this 

research will focus on the well-established methods, which are Phase-Phase and 

Phase-Code method and comparing it with the most precise method, which is 

named Doppler measurements method. A short study on the Doppler method 

and its precision in detecting and predicting the cycle slip error in our data, will 

be presented in the following section. 

D o p p l e r  M e a s u r e m e n t s  M e t h o d  

This technique takes the advantage of the fact that, the Doppler measure-

ments are immune to cycle slips because they are computed values, where these 

Doppler measurements are equal to the expected change at carrier phase measure-

ment from two adjacent epochs [Silva, 2013]. To clarify, when a cycle slip found 
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in a certain epoch, the Doppler measurement doesn’t equal to the carrier phase 

time difference between this epoch and its previous epoch. The carrier phase varia-

tion between two adjacent epochs can be estimated by Doppler data according to 

the following equation (11) [Dai, 2012]: 

[∅Li(t) − ∅Li(t − 1)] = [DLi(t) + DLi(t − 1)] ∗ dt/2             (11) 

where:  

D — Doppler frequency measurements, MHz; 

dt — the sampling interval, sec. 

 

So if this condition equation is not achieved; that means there is cycle 

slip error affects the phase observations. When this method was applied on our 

phase observations data it was found that this method succeed in detecting and 

predicting smallest cycle slip sizes (1 cycle), as shown in Table 4. The resultant 

precision of this method is agreed by many researchers [Dai, 2012], Ren et al., 

2012] in case the local oscillator has low bias [Ren et al., 2011]. 

 

Table 4. The possibility of the usage methods for detecting cycle slip error 

Cycle Slip Count 

 

 

Prediction method 

> 100 10 5 1 

Doppler method  

(the precise method) 
Detected Detected Detected Detected 

Phase-Code Detected Detected Not Detected Not Detected 

Phase-Phase Detected Detected Detected Not Detected 

Modified Phase-Code Detected Detected Detected Detected 

Modified Phase-Phase Detected Detected Detected Detected 

P h a s e - C o d e  D i f f e r e n c i n g  M e t h o d  

This method depends on the comparison between observables (phase 

and code), where the code measurements are immune to the cycle slip error. At 

stand-alone GPS receiver, the observations equations for pseudorange code and 

carrier phase measurements can be formulated as (12) and (13) [Dai, 2012]: 
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𝑃𝐿𝑖

𝑚(𝑡)  = 𝜌𝑚(𝑡) +  𝑐[ 𝛿𝑡𝑟(𝑡)  −  𝛿𝑡𝑠 (𝑡)] + 𝑇𝑚(𝑡) + 𝐼𝑚(𝑡) +  𝐸𝑅𝑡(𝑡) +

 + 𝑏𝑖𝑎𝑠𝑝
𝑚                                                                                                           (12) 

∅𝐿𝑖

𝑚(𝑡) = 𝜌𝑚(𝑡) + 𝑐[𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)] + 𝑇𝑚(𝑡) − 𝐼𝑚(𝑡) +  𝐸𝑅𝑡(𝑡) + 𝜆𝐿𝑖
𝑁𝐿𝑖

+

+ 휀𝐿𝑖

𝑚                                                                                                                  (13) 

By using the differencing technique between two consecutive epochs, free 

of cycle slip, at time (ti and tj), to eliminate the most affecting errors on the phase 

and code measurements, the (12) and (13) can be written as: 

𝛥𝑃𝐿𝑖

𝑚 = 𝛥𝜌𝑚 + 𝑐[𝛥𝛿𝑡𝑟 − 𝛥𝛿𝑡𝑠]+𝛥𝑇𝑚 + 𝛥𝐼𝑚 + 𝛥𝐸𝑅𝑡 + 𝛥𝑏𝑖𝑎𝑠𝑝
𝑚      (14) 

𝛥∅𝐿𝑖

𝑚 = 𝛥𝜌𝑚 + 𝑐[𝛥𝛿𝑡𝑟 − 𝛥𝛿𝑡𝑠]+𝛥𝑇𝑚 − 𝛥𝐼𝑚 + 𝛥𝐸𝑅𝑡 + 𝜆𝐿𝑖
𝛥𝑁𝐿𝑖

+ 𝛥휀𝑝
𝑚  (15) 

When subtract (14) from (15) most of the errors are removed but the dif-

ference of ionospheric error doubled because its sign in phase equation reverse 

its sign in code equation. But the change in ionospheric delay between adjacent 

epochs would be very small so it can be neglected, this assumption is case of 

small sampling interval (less than 1 minute) [Dai, 2012; Kim, 2002]. Also, the 

time difference between ambiguities (N) is zero in case of no cycle slip [Ashby, 

2003] thus, the equation resulted would be as follow (16): 

ΔPLi

m = λLi ∗ [Δ∅Li

m]                                          (16) 

If this condition equation is not achieved; that means there is a cycle slip 

error affects the observations. When this method applied on our phase observa-

tions data it was found that; this method succeed in detecting and predicting 

cycle slip size ≥ 10 cycles, as shown in Table 4, because the code measurements 

have high noise level and the ionospheric change might have high variation [Ren 

et al., 2012; Karaim et al., 2014].  

P h a s e - P h a s e  D i f f e r e n c i n g  M e t h o d  

This method depends on the comparison between observables (phase 

1 and phase 2), where the phase measurements have low noise effect. The ob-

servation equations for carrier phases measurements (L1 and L2) at the abso-

lute positioning is (13) and can be formulated for each phase in (17) and (18) 

[Dai, 2012]: 
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∅𝐿1

𝑚 (𝑡) = 𝜌𝑚(𝑡) + 𝑐[𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)] + 𝑇𝑚(𝑡) − 𝐼𝑚(𝑡) +  𝐸𝑅𝑡(𝑡) + 𝜆𝐿1
𝑁𝐿1

+

+ 휀𝐿1

𝑚                                                                                                                  (17) 

∅𝐿2

𝑚 (𝑡) = 𝜌𝑚(𝑡) + 𝑐[𝛿𝑡𝑟(𝑡) − 𝛿𝑡𝑠(𝑡)] + 𝑇𝑚(𝑡) − (
𝑓1

𝑓2
)
2
𝐼𝑚(𝑡) +  𝐸𝑅𝑡(𝑡) +

+ 𝜆𝐿2
𝑁𝐿2

+ 휀𝐿2

𝑚                                                                                                  (18) 

where: 

f1 and f2 — frequencies of phases L1 and L2 respectively, MHz. 

By using the differencing technique between two consecutive epochs, 

free of cycle slip, at time (ti and tj), to eliminate the most affecting errors on the 

phases measurements, the (17) and (18) can be written as follows: 

∆∅𝐿1

𝑚 = ∆𝜌𝑚 + 𝑐[∆𝛿𝑡𝑟 − ∆𝛿𝑡𝑠] + ∆𝑇𝑚 − ∆𝐼𝑚 + ∆𝐸𝑅𝑡 + 𝜆𝐿1
∆𝑁𝐿1

+ ∆휀𝐿1

𝑚  (19) 

∆∅𝐿2

𝑚 = ∆𝜌𝑚 + 𝑐[∆𝛿𝑡𝑟 − ∆𝛿𝑡𝑠] + ∆𝑇𝑚 − (
𝑓1

𝑓2
)
2
∆𝐼𝑚 + ∆𝐸𝑅𝑡 + 𝜆𝐿2

∆𝑁𝐿2
+

+ ∆휀𝐿2

𝑚                                                                                                               (20) 

The change in errors at (19) and (20) from epoch to adjacent epoch are 

very small, so it can be neglected. Also, this assumption is right at small sam-

pling interval (less than 1 minute), and the time difference between ambiguities 

(N) is zero in case of no cycle slip [Ashby, 2003] thus, the equation resulted as 

follow (21):  

∆∅𝐿1

𝑚 − ∆∅𝐿2

𝑚 = 0                                           (21) 

When this method was applied to our phase observations data using this 

condition equation, it was found that this method succeed in detecting and pre-

dicting cycle slip size ≥ 5 cycles [Ren et al., 2012] as shown in Table 4. Because 

the ionospheric change might have high variation. 

MODIFICATION FOR PHASE-CODE AND PHASE-PHASE METHODS 

This modification aims to increase the precision of the Phase-Code and 

Phase-Phase methods in detecting small cycle-slips [Ren et al., 2012] by developing 
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a new algorithm to determine the change in the ionospheric values and code noise 

from epoch to epoch by solving all observables equations by least square tech-

nique. The linearized observations equations system can be represented using 

the matrix notation as follow (22) [Xu, 2007]: 

𝑨𝑳 + 𝑣 = 𝑿                                              (22) 

where:  

X — Matrix of the unknowns;  

A — Matrix of coefficients;  

L — Matrix of the observation. 

 

After subtracting each observable equation at certain epoch from the ad-

jacent epoch, the final forms of all observables equations according to the form 

of basic equation of Least Square technique (22), are as follows: 

∆∅𝑳𝟏

𝒎 + 𝒗𝟏 = ∆𝝆𝒎 − ∆𝑰𝒎                                  (23) 

∆∅𝑳𝟐

𝒎 + 𝒗𝟐 = ∆𝝆𝒎 − (
𝒇𝟏

𝒇𝟐
)
𝟐
∆𝑰𝒎                               (24) 

𝜟𝑷𝑳𝟏

𝒎 + 𝒗𝟑 = 𝜟𝝆𝒎 + ∆𝑰𝒎+𝜟𝒃𝒊𝒂𝒔𝑳𝟏

𝒎                            (25) 

𝜟𝑷𝑳𝟐

𝒎 + 𝒗𝟒 = 𝜟𝝆𝒎+(
𝒇𝟏

𝒇𝟐
)
𝟐
∆𝑰𝒎 + 𝜟𝒃𝒊𝒂𝒔𝑳𝟐

𝒎                      (26) 

The related least squares normal equation can be formed then as follow 

[Xu, 2007]: 

𝐗 = (𝐀𝐓𝐀)−𝟏𝐀𝐓𝐋                                               (27) 

Where the matrices of these equation terms can detailed as follows:  

𝐗 =

[
 
 
 
 

∆𝝆𝐦

∆𝐈𝐦

𝚫𝐛𝐢𝐚𝐬𝐋𝟏

𝐦

𝚫𝐛𝐢𝐚𝐬𝐋𝟐

𝐦
]
 
 
 
 

            𝑨 =

[
 
 
 
 
 
𝟏          − 𝟏            𝟎          𝟎

𝟏          − (
𝐟𝟏

𝐟𝟐
)
𝟐
       𝟎          𝟎

𝟏               𝟏             𝟏           𝟎

𝟏             (
𝐟𝟏

𝐟𝟐
)
𝟐
       𝟎           𝟏]

 
 
 
 
 

           𝐋 =

[
 
 
 
 
∆∅𝐋𝟏

𝐦

∆∅𝐋𝟐

𝐦

𝚫𝐏𝐋𝟏

𝐦

𝚫𝐏𝐋𝟐

𝐦
]
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Solving this equation, the unknown value can be determined, which are 

∆𝛒𝐦, ∆𝐈𝐦, 𝚫𝐛𝐢𝐚𝐬𝐋𝟏

𝐦  and 𝚫𝐛𝐢𝐚𝐬𝐋𝟐

𝐦 . These values can be used for enhancing the

Phase-Phase and the Phase-Code methods, where the problems of ionospheric 

doubling and the code noise that affects the Phase-Code method and also the 

ionospheric high variation affects the Phase-Phase method can be solved. 

When these methods were applied again to our observation data of point C 

and point R after the previous modifications, it was found that this method succeed 

in detecting and predicting cycle slip size equal to 1cycle, as shown in Table 4. 

CONCLUSIONS 

The algorithm developed in this research succeed in increasing the cycle 

slip error detecting precision for Phase-Code differencing method, and Phase-Phase 

Differencing Method. Their precision become close to, or equal, the precision of 

Doppler measurement method, where they can detect and predict the smallest 

cycle slips of size even of 1 cycle. The new algorithm succeed in determining 

the error of the aforementioned methods, which are ionospheric doubling and the 

code noise effects in the Phase-Code method and the high ionospheric variation 

effects in the Phase-Phase method. 
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STRESZCZENIE 

Powszechnie znane są trzy metody wykrywania przeskoków fazowych (utraty cyklu, 

cycle slip) w fazowych pomiarach GPS. Są to: metoda Dopplerowska, metoda różnicy 

Faza-Kod i metoda różnicy pomiędzy fazami (Faza-Faza). Pierwsza z nich polega na po-

równaniu wartości obserwowanych i korzysta z faktu, że pomiary częstotliwości dopple-

rowskiej są odporne na przeskoki fazy. Metoda ta jest uważana za najbardziej dokładną 

spośród metod wykrywania utraty cyklu, albowiem pozwala wykrywać i przewidywać 

najmniejsze wartości utraty cyklu (1 cykl) pod warunkiem niewielkiego odstrojenia lokalnego 

generatora. Druga metoda polega na porównaniu wartości obserwowanych fazy i kodu  

z wykorzystaniem faktu, że pomiary kodowe są odporne na przeskoki cyklu. Jednakże 

metoda ta nie pozwala wykryć utraty cykli mniejszych niż dziesięć okresów z powodu 

wartości szumu pomiarów kodowych. Trzecia metoda polega na porównaniu wartości 

obserwowanych wyłącznie w domenie pomiarów fazowych w kolejnych epokach i uwzględ-

nia fakt, że pomiary fazowe cechują się niższym zaszumieniem. Jednak ta metoda nie 

pozwala dostrzec przeskoków cyklu o wartości mniejszej niż 5 z powodów własności 

jonosfery. 
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Dla zwiększenia dokładności ostatnich dwóch metod i możliwości wykrycia pojedyn-

czych przeskoków cyklu zaproponowano nowy algorytm wykrywania przeskoków fazy 

wywołanych zmianami stanu jonosfery pomiędzy epokami. Zostało to osiągnięte po-

przez rozwiązywanie wszystkich równań obserwacyjnych metodą najmniejszych kwa-

dratów. Ta modyfikacja pozwoliła wykrywać nawet pojedyncze przeskoki cyklu.  

 

 




