PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synergistic Effects of Plasma Treatment and Fabric Structure on Stab-Resistance Performances of STF/Aramid Composite Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Synergistyczny wpływ obróbki plazmowej i struktury tkaniny na parametry odporności na przebicie tkanin kompozytowych STF/aramid
Języki publikacji
EN
Abstrakty
EN
In order to improve the contribution of STF and fabric to the stab resistance of STF-impregnated aramid soft armour materials, the plasma treatment of various fabric structures was conducted. This study explored the interactive effects of plasma treatment, fabric structure and particle size on the spike and knife resistance properties of plasma-treated STF/Aramid fabrics. Fumed silica and polyethylene glycol (PEG) based STFs were prepared with various particle sizes (15 nm, 75 nm) at a solid content of 15%. Various weave structures of fabrics (plain, 2/2 twill, 5/3 satin, 2/2 basket) were impregnated with STF and then plasma-treatment conducted. The rheological behaviour of STF in various silica sizes as well as the spike and knife quasi-static stab resistances of the resultant plasma-treated STF/aramid fabrics in various weave structures were both explored. The results show that the various weave structures of STF/Aramid fabrics treated with plasma exhibited a significant enhancement of quasi-static spike resistance. Furthermor, 2/2 twill, 5/3 satin and basket weaving plasma-treated STF/Aramid with a coarser silica particle in STF showed a higher improvement in quasi-static spike resistance. Interactive effect results show that the plasma treatment of fabric and the silica size in STF affected spike resistance more significantly, while knife resistance was only significantly affected by the fabric structure.
PL
Aby poprawić odporność na przebicie tkaniny kompozytowych STF/aramid przeprowadzono ich obróbkę plazmową. Zbadano interaktywny wpływ obróbki plazmowej, struktury tkaniny i wielkości cząstek na właściwości odporności na przebicie kolcami i nożem tkanin kompozytowych STF/aramid poddanych działaniu plazmy. Przygotowano STF na bazie zmatowionej krzemionki koloidalnej i glikolu polietylenowego (PEG) o różnych wielkościach cząstek (15 i 75 nm) o zawartości substancji stałych wynoszącej 15%. Różne struktury splotu tkanin (m.in. gładkie, 2/2 diagonalne i 5/3 satynowe) zostały zaimpregnowane STF, a następnie przeprowadzono obróbkę plazmą. Badano zarówno zachowanie reologiczne w przypadku różnych rozmiarów krzemionki, jak i quasi-statyczne odporności na przebicie kolcami i nożem otrzymanych tkanin STF/aramid poddanych obróbce plazmowej i wykonanych z zastosowaniem różnych struktur splotu. Wyniki pokazały, że różne struktury splotu tkanin STF aramid poddanych obróbce plazmą wykazały znaczne zwiększenie quasi-statycznej odporności na przebicie kolcami. Ponadto tkany z grubszą cząstką krzemionki w STF wykazały poprawę w quasi-statycznej odporności na przebicie kolcami. Wyniki pokazały, że obróbka plazmowa tkaniny i rozmiar krzemionki w STF wpłynęły bardziej na odporność na przebicie kolcami, podczas gdy na wytrzymałość na przebicie nożem istotny wpływ miała tylko struktura tkaniny.
Rocznik
Strony
67--75
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Tianjin Polytechnic University, School of Textiles, Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin 300387, China
  • Minjiang University, Department of Chemistry and Chemical Engineering, Fujian 350108, China
autor
  • Tianjin Polytechnic University, School of Textiles, Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin 300387, China
  • Tianjin Polytechnic University, School of Textiles, Innovation Platform of Intelligent and Energy-Saving Textiles, Tianjin 300387, China
  • Minjiang University, Department of Chemistry and Chemical Engineering, Fujian 350108, China
  • Feng Chia University, Department of Fibre and Composite Materials, Laboratory of Fibre Application and Manufacturing, Taichung 40724, Taiwan
  • China Medical University, School of Chinese Medicine, Taichung 40402, Taiwan
  • Asia University, Department of Fashion Design, Taichung 41354, Taiwan
Bibliografia
  • 1. Feng X, Li S, Wang Y, Wang Y, Liu J. Effects of Different Silica Particles on Quasi-Static Stab Resistant Properties of Fabrics Impregnated with Shear Thickening Fluids. Materials & Design 2014; 64: 456-61.
  • 2. Gürgen S, Kuşhan MC. The Stab Resistance of Fabrics Impregnated with Shear Thickening Fluids Including Various Particle Size of Additives. Composites Part A-Applied Science and Manufacturing 2017; 94, 50-60.
  • 3. Hasanzadeh M, Mottaghitalab V. The Role of Shear-Thickening Fluids (STFs) in Ballistic and Stab-Resistance Improvement of Flexible Armor. Journal of Materials Engineering and Performance 2014; 23, 4: 1182-1196.
  • 4. Srivastava A, Majumdar A, Butola BS. Improving The Impact Resistance of Textile Structures by Using Shear Thickening Fluids: A Review. Critical Reviews in Solid State and Materials Sciences 2012; 37, 2: 115-29.
  • 5. Barnes HA, Shear-Thickening (‘‘Dilatancy’’) in Suspensions of Nonaggregating Solid Particles Dispersed in Newtonian Liquids. Journal of Rheology 1989; 33: 329-366.
  • 6. Decker MJ, Halbach CJ, Nam CH, Wagner NJ, Wetzel ED. Stab Resistance of Shear Thickening Fluid (STF)-Treated Fabrics. Composites Science and Technology 2007; 67, 3: 565-578.
  • 7. Hassan TA, Rangari VK, Jeelani S. Synthesis, Processing and Characterization of Shear Thickening Fluid (STF) Impregnated Fabric Composites. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 2010; 527, 12: 2892-2899.
  • 8. Kalman DP, Merrill RL, Wagner NJ, Wetzel ED. Effect of Particle Hardness on the Penetration Behavior of Fabrics Intercalated with Dry Particles and Concentrated Particle-Fluid Suspensions. ACS Applied Materials & Interfaces 2009; 1, 11: 2602-2612.
  • 9. Gong X, Xu Y, Zhu W, Xuan S, Jiang W, Jiang W. Study of the Knife Stab and Puncture-Resistant Performance for Shear Thickening Fluid Enhanced Fabric. Journal of Composite Materials 2014; 48, 6: 641-657.
  • 10. Kang TJ, Kim CY, Hong KH. Rheological Behavior of Concentrated Silica Suspension and its Application to Soft Armor. Journal of Applied Polymer Science 2012; 124, 2: 1534-1541.
  • 11. Lu Z, Wu L, Gu B, Sun B. Numerical Simulation of the Impact Behaviors of Shear Thickening Fluid Impregnated Warp-Knitted Spacer Fabric. Composites Part B-Engineering 2015; 69: 191- 200.
  • 12. Messiry El M, Eltahan E. Stab Resistance of Triaxial Woven Fabrics for Soft Body Armor. Journal of Industrial Textiles 2016; 45, 5: 1062-1082.
  • 13. Majumdar A, Laha A. Effects of Fabric Construction and Shear Thickening Fluid on Yarn Pull-Out From High-Performance Fabrics. Textile Research Journal 2016; 86, 19: 2056-2066.
  • 14. Laha A, Majumdar A. Interactive Effects of P-Aramid Fabric Structure and Shear Thickening Fluid on Impact Resistance Performance of Soft Armor Materials. Materials & Design 2016; 89: 286-293. 15. Chua CK, Chena YL. Ballistic-Proof Effects of Various Woven Constructions. FIBRES & TEXTILES in Eastern Europe 2010; 18, 6 (83): 83-87.
  • 16. Shimek ME, Fahrenthold EP. Effects of Weave Type on the Ballistic Performance of Fabrics. AIAA Journal 2012; 50, 11: 2558-2565.
  • 17. Li TT, Wang R, Lou CW, Lin JH. Static and Dynamic Puncture Behaviors of Compound Fabrics with Recycled High -Performance Kevlar Fibres. Composites Part B-Engineering 2014; 59: 60-66.
  • 18. Li TT, Wang R, Lou CW, Lin JY, Lin JH. Static and Dynamic Puncture Failure Behaviors of 3D Needle-Punched Compound Fabric Based on Weibull Distribution, Textile Research Journal 2014; 84, 18:1903-1914.
  • 19. Li TT, Lou CW, Lin JY, Lin MC, Lin JH. Static and Dynamic Puncture Properties of Intra-/Inter-Laminar Reinforced Multilayer Compound Fabrics by Needle-Punching and Thermal Bonding. Textile Research Journal 2016; 86, 14: 1487-1497.
  • 20. Peters IR, Majumdar S, Jaeger HM. Direct Observation of Dynamic Shear Jamming in Dense Suspensions. Nature 2016; 532, 7598: 214-217.
  • 21. Lee BW, Kim IJ, Kim CG. The Influence Of The Particle Size of Silica on The Ballistic Performance of Fabrics Impregnated with Silica Colloidal Suspension. Journal of Composite Materials 2009; 43, 23: 2679-2698.
  • 22. Srivastava A, Majumdar A, Butola BS. Improving The Impact Resistance Performance of Kevlar Fabrics using Silica Based Shear Thickening Fluid. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 2011; 529: 224-229.
  • 23. Wang J, Chen P, Li H, Li W, Wang B, Zhang C, Ni R. Surface Characteristic of Poly (P-Phenylene Terephthalamide). Fibres with Oxygen Plasma Treatment, Surface and Interface Analysis 2008; 40, 9: 1299-1303.
  • 24. Ren Y, Wang C, Qiu Y. Influence of Aramid Fibre Moisture Regain During Atmospheric Plasma Treatment on Aging of Treatment Effects on Surface Wettability and Bonding Strength to Epoxy. Applied Surface Science 2007; 253, 23: 9283- 9289.
  • 25. On SY, Kim MS, Kim SS. Effects of Post-Treatment of Meta-Aramid Nanofibre Mats on The Adhesion Strength of Epoxy Adhesive Joints. Composite Structures 2017; 159: 636-645.
  • 26. Martinez MA, Abenojar J, Enciso B, Velasco FJ. Effect of Atmospheric Plasma Torch on Ballistic Woven Aramid. Textile Research Journal, 0040517516671122, 2016.
  • 27. Li TT, Wang R, Lou CW, Huang CH, Lin JH. Mechanical and Physical Properties of Puncture-Resistance Plank Made of Recycled Selvages. Fibres and Polymers 2013; 14, 2: 258-265.
  • 28. Li TT, Fang J, Huang CH, Lou CW, Lin JY, Lin MC, Lin JH. Numerical Simulation of Dynamic Puncture Behaviors of Woven Fabrics Based on the Finite Element Method. Textile Research Journal 2017; 87, 11: 1308-1317.
  • 29. Hosur MV, Vaidya UK, Ulven C, Jeelani S. Performance of Stitched/Unstitched Woven Carbon/Epoxy Composites under High Velocity Impact Loading. Composite Structures 2004; 64, 3: 455-466.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4216e0a0-de20-4619-b433-b68a6d1f154e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.