PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The obstacle vector field (OVF) method for collision-free trajectory planning of free-floating space manipulator

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Manipulators mounted on small satellites will be used to perform on-orbit servicing, removal of space debris, and assembly of large orbital structures. During such operations, the manipulator must avoid collisions with the target object or the elements of the assembled structure. Planning of the manipulator trajectory is one of the major challenges for the proposed missions because the motion of the manipulator influences the position and orientation of the satellite. Thus, the dynamic equations of motion must be used during trajectory planning. Methods developed for fixed-base manipulators working on Earth cannot be directly applied. In this paper, we propose a new obstacle vector field (OVF) method for collision-free trajectory planning of a manipulator mounted on a free-floating satellite. The OVF method is based on a vector field that surrounds the obstacles and generates virtual forces that drive the manipulator around the obstacles. The OVF method is compared with the classical artificial potential field (APF) method and the rapidly exploring random trees (RRT) method. In the presented examples the trajectory planning problem is solved for a planar case in which the satellite is equipped with a 2 DoF manipulator. It is shown that the OVF method is more efficient than the APF method, i.e., it allows us to solve the trajectory planning problem in some of the cases, in which the APF method is unsuccessful. The time required to find the solution with the use of the OVF method is shorter than the time needed by the APF and the RRT method.
Rocznik
Strony
art. no. e140691
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
  • Centrum Badań Kosmicznych Polskiej Akademii Nauk (CBK PAN), Warsaw, Poland
Bibliografia
  • [1] S. Estable et al., “Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e. Deorbit consolidation phase study,” J. Space Saf. Eng., vol. 7, no. 1, pp. 52–66, 2020, doi: 10.1016/j.jsse.2020.01.003.
  • [2] J.S. Hudson and D. Kolosa, “Versatile On-Orbit Servicing Mission Design in Geosynchronous Earth Orbit,” J. Spacecr. Rockets, vol. 57, no. 4, pp. 844–850, 2020, doi: 10.2514/1.A34701.
  • [3] Z. Xue, J. Liu, C. Wu, and Y. Tong, “Review of in-space assembly technologies,” Chin. J. Aeronaut., vol. 34, no. 11, pp. 21–47, 2021, doi: 10.1016/j.cja.2020.09.043.
  • [4] S. Mohan and D.W. Miller, “Dynamic control model calculation: a model generation architecture for autonomous on-orbit assembly,” J. Spacecr. Rockets., vol. 51, no. 5, pp. 1430–1453, 2014, doi: 10.2514/1.A32581.
  • [5] I. Rekleitis, E. Martin, G. Rouleau, R. L’Archevêque, K. Parsa, and E. Dupuis, “Autonomous capture of a tumbling satellite,” J. Field Robot., vol. 24, no. 4, pp. 275–296, 2007, doi: 10.1002/rob.20194.
  • [6] T. Rybus, K. Seweryn, and J.Z. Sa˛siadek, “Control system for free-floating space manipulator based on Nonlinear Model Predictive Control (NMPC),” J. Intell. Robot. Syst., vol. 85, no. 3, pp. 491–509, 2017, doi: 10.1007/s10846-016-0396-2.
  • [7] P. Rank, Q. Mühlbauer, W. Naumann, and K. Landzettel, “The DEOS automation and robotics payload,” in Proc. 11th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), ESTEC, Noordwijk, The Netherlands, 2011.
  • [8] J. Virgili-Llop, J.V. Drew, R. Zappulla II, and M. Romano, “Laboratory experiments of resident space object capture by a spacecraft–manipulator system,” Aerosp. Sci. Technol., vol. 71, pp. 530–545, 2017, doi: 10.1016/j.ast.2017.09.043.
  • [9] E. Papadopoulos and S. Dubowsky, “On the nature of control algorithms for free-floating space manipulators,” IEEE Trans. Robot. Autom., vol. 7, no. 6, pp. 750–758, 1991, doi: 10.1109/70.105384.
  • [10] J. Ratajczak and K. Tchoń, “Normal forms and singularities of non-holonomic robotic systems: A study of free-floating space robots,” Syst. Control. Lett., vol. 138, 104661, 2020, doi: 10.1016/j.sysconle.2020.104661.
  • [11] A. Ratajczak, “Trajectory reproduction and trajectory tracking problem for the nonholonomic systems,” Bull. Polish Acad. Sci. Tech. Sci., vol. 64, no. 1, pp. 63–70, 2016, doi: 10.1515/bpasts-2016-0008.
  • [12] I. Duleba, “Impact of control representations on efficiency of local nonholonomic motion planning,” Bull. Polish Acad. Sci. Tech. Sci., vol. 59, no. 2, pp. 213–218, 2011, doi: 10.2478/v10175-011-0026-x.
  • [13] T. Rybus, “Obstacle avoidance in space robotics: review of major challenges and proposed solutions,” Prog. Aerosp. Sci., vol. 101, pp. 31–48, 2018, doi: 10.1016/j.paerosci.2018.07.001.
  • [14] T. Rybus and K. Seweryn, “Application of rapidly-exploring random trees (RRT) algorithm for trajectory planning of freefloating space manipulator,” in Proc. 10th International Workshop on Robot Motion and Control (RoMoCo), Pozna´n, Poland, 2015, doi: 10.1109/RoMoCo.2015.7219719.
  • [15] J.R. Benevides and V. Grassi, “Autonomous path planning of free-floating manipulators using RRT-based algorithms,” in Proc. 12th Latin American Robotics Symposium and 3rd Brazilian Symposium on Robotics (LARS-SBR), Uberlandia, Minas Gerais, Brazil, 2015, doi: 10.1109/LARS-SBR.2015.47.
  • [16] T. Rybus, “Point-to-point motion planning of a free-floating space manipulator using the Rapidly-Exploring Random Trees (RRT) method,” Robotica, vol. 38, no. 6, pp. 957–982, 2020, doi: 10.1017/S0263574719001176.
  • [17] X. Gao, Q. Jia, H. Sun, and G. Chen, “Research on path planning for 7-DOF space manipulator to avoid obstacle based on A* algorithm,” Sens. Lett., vol. 9, no. 4, pp. 1515–1519, 2011, doi: 10.1166/sl.2011.1665.
  • [18] C. Toglia, M. Sabatini, P. Gasbarri, and G.B. Palmerini, “Optimal target grasping of a flexible space manipulator for a class of objectives,” Acta Astronaut., vol. 68, no. 7-8, pp. 1031–1041, 2011, doi: 10.1016/j.actaastro.2010.09.013.
  • [19] G. Misra and X. Bai, “Optimal path planning for free-flying space manipulators via sequential convex programming,” J. Guid. Control Dyn., vol. 40, no. 11, pp. 3019–3026, 2017, doi: 10.2514/1.G002487.
  • [20] T. Rybus, M. Wojtunik, and F.L. Basmadji, “Optimal collisionfree path planning of a free-floating space robot using splinebased trajectories,” Acta Astronaut., vol. 190, pp. 395–408, 2022, doi: 10.1016/j.actaastro.2021.10.012.
  • [21] Z. Hendzel, “Collision free path planning and control of wheeled mobile robot using Kohonen self-organising map,” Bull. Polish Acad. Sci. Tech. Sci., vol. 53, no. 1, pp. 39–47, 2005.
  • [22] W. Kowalczyk, M. Michałek, and K. Kozłowski, “Trajectory tracking control with obstacle avoidance capability for unicyclelike mobile robot,” Bull. Polish Acad. Sci. Tech. Sci., vol. 60, no. 3, pp. 537–546, 2012, doi: 10.2478/v10175-012-0066-x.
  • [23] C.C. Lin and J.H. Chuang, “Potential-based path planning for robot manipulators in 3-D workspace”, in Proc. IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003, doi: 10.1109/ROBOT.2003.1242108.
  • [24] A. Wojciechowski, “Camera navigation support in a virtual environment,” Bull. Polish Acad. Sci. Tech., vol. 61, no. 4, pp. 871–884, 2013, doi: 10.2478/bpasts-2013-0094.
  • [25] T. Rybus and K. Seweryn, “Zastosowanie metody sztucznych pól potencjału do planowania trajektorii manipulatora satelitarnego (Application of the artificial potential field method for trajectory planning of space manipulator),” in Postępy Robotyki, Prace Naukowe Politechniki Warszawskiej: Elektronika, vol. 196, K. Tchoń and C. Zieliński, Eds. Oficyna Wydawnicza Politechniki Warszawskiej, 2018, pp. 61–74 [in Polish].
  • [26] R. Mukherjee and Y. Nakamura, “Nonholonomic redundancy of space robots and its utilization via hierarchical liapunov functions,” in Proc. American Control Conference (ACC), Boston, USA, 1991, doi: 10.23919/ACC.1991.4791630.
  • [27] Y. Yanoshita and S. Tsuda, “Space Robot Path Planning for Collision Avoidance,” in Proc. International MultiConference of Engineers and Computer Scientists (IMECS), Hong Kong, 2009, vol. 2.
  • [28] J.B. Balaram and H. W. Stone, “Automated Assembly in the JPL Telerobot Testbed,” in Intelligent Robotic Systems for Space Exploration, A.A. Desrochers, Ed. Springer, New York, 1992, pp. 297–342, doi: 10.1007/978-1-4615-3634-5_8.
  • [29] R.K. Mathur, R. Münger, and A.C. Sanderson, “Hierarchical Planning for Space-Truss Assembly,” in Intelligent Robotic Systems for Space Exploration, A.A. Desrochers, Ed. Springer, New York, 1992, pp. 141–184, doi: 10.1007/978-1-4615-3634-5_4.
  • [30] A. Ratajczak and J. Ratajczak, “Trajectory Reproduction Algorithm in Application to an On-Orbit Docking Maneuver with Tumbling Target,” in Proc. 12th International Workshop on Robot Motion and Control (RoMoCo), Pozna´n, Poland, 2019, pp. 172–177, doi: 10.1109/RoMoCo.2019.8787367.
  • [31] A.A. Masoud, “A harmonic potential field approach for planning motion of a UAV in a cluttered environment with a drift field,” in Proc. 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, USA, 2011, doi: 10.1109/CDC.2011.6160192.
  • [32] A.A. Masoud and A. Al-Shaikhi, “Time-sensitive, sensor-based, joint planning and control of mobile robots in cluttered spaces: A harmonic potential approach,” in Proc. 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015, doi: 10.1109/CDC.2015.7402634.
  • [33] A.K. Pamosoaji and K.S. Hong, “A path-planning algorithm using vector potential functions in triangular regions,” IEEE Trans. Syst. Man Cybern. Syst., vol. 43, no. 4, pp. 832–842, 2013, doi: 10.1109/TSMCA.2012.2221457.
  • [34] A.A. Masoud and M.M. Bayoumi, “Robot navigation using the vector potential approach,” in Proc. IEEE International Conference on Robotics and Automation (ICRA), Atlanta, USA, 1993, doi: 10.1109/ROBOT.1993.292076.
  • [35] T. Rybus et al., “Application of a planar air-bearing microgravity simulator for demonstration of operations required for an orbital capture with a manipulator,” Acta Astronaut., vol. 155, pp. 211–229, 2019, doi: 10.1016/j.actaastro.2018.12.004.
  • [36] S. Ulrich, J.Z. Sąsiadek, and I. Barkana, “Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties,” J. Guid. Control Dyn., vol. 37, no. 6, pp. 1961–1975, 2014, doi: 10.2514/1.G000197.
  • [37] M.S. Sakha, H. Kharrati, and F. Mehdifar, “Adaptive control of free-floating manipulator in presence of stochastic input disturbances and unknown dynamical parameters,” J. Vib. Control, 2021, doi: 10.1177/10775463211010525.
  • [38] W. Domski and A. Mazur, “Tracking of numerically defined trajectory by free-floating 3D satellite,” in Proc. 12th International Workshop on Robot Motion and Control (RoMoCo), Poznań, Poland, 2019, pp. 178–183, doi: 10.1109/RoMoCo.2019.8787342.
  • [39] W. Domski and A. Mazur, “Input-output decoupling for a 3D free-floating satellite with a 3R manipulator with state and input disturbances,” Bull. Polish Acad. Sci. Tech., vol. 67, no. 6, pp. 1031–1039, 2019, doi: 10.24425/bpasts.2019.130885.
  • [40] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review of space robotics technologies for on-orbit servicing,” Prog. Aerosp. Sci., vol. 68, pp. 1–26, 2014, doi: 10.1016/j.paerosci.014.03.002.
  • [41] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” in Autonomous Robot Vehicles, I.J. Cox and G.T.Wilfong, Eds. Springer, New York, 1986, pp. 396–404, doi: 10.1007/978-1-4613-8997-2_29.
  • [42] R. Volpe and P. Khosla, “Artificial potentials with elliptical isopotential contours for obstacle avoidance,” in Proc. 26th IEEE Conference on Decision and Control (CDC), vol. 26, Los Angeles, USA, 1987, pp. 180–185, doi: 10.1109/CDC.1987.272738.
  • [43] O. Khatib, “The potential field approach and operational space formulation in robot control,” in Adaptive and Learning Systems, K.S. Narendra, Ed. Springer, Boston, 1986, pp. 367–377, doi: 10.1007/978-1-4757-1895-9_26.
  • [44] X. Xu, L. Zhang, S. Sotiriadis, E. Asimakopoulou, M. Li, and N. Bessis, “CLOTHO: A large-scale Internet of Things-based crowd evacuation planning system for disaster management,” IEEE Internet Things J., vol. 5, no. 5, pp. 3559–3568, 2018, doi: 10.1109/JIOT.2018.2818885.
  • [45] R. Volpe and P. Khosla, “Manipulator control with superquadric artificial potential functions: Theory and experiments,” IEEE Trans. Syst. Man Cybern., vol. 20, no. 6, pp. 1423–1436, 1990, doi: 10.1109/21.61211.
  • [46] J.O. Kim and P.K. Khosla, “Real-time obstacle avoidance using harmonic potential functions,” EEE Trans. Robot. Autom., vol. 8, no. 3, pp. 338–349, 1992, doi: 10.1109/70.143352.
  • [47] H. Zhang, Y. Wang, J. Zheng, and J. Yu, “Path Planning of Industrial Robot Based on Improved RRT Algorithm in Complex Environments,” IEEE Access, vol. 6, pp. 53296–53306, 2018, doi: 10.1109/ACCESS.2018.2871222.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-421490e3-441d-4fb8-b077-d45a660a1a67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.