Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper presents research involving the selection of floating photovoltaics (FPV) system constructions under Polish conditions using a multi-criteria method incorporating criteria compensation reduction following the strong sustainability paradigm. The applied method is called SSP-COPRAS (Strong Sustainability based Complex Proportional Assessment). The selection was carried out among four FPV designs and one reference conventional ground-mounted PV (GMPV) system. Data were obtained from the reference research paper. The results proved that the FPV system has a noticeable potential for making it competitive with GMPV, especially when technical criteria and criteria compensation reduction play an important role. However, GMPV's higher ratings, especially in terms of economics, show that FPV would have to reach a higher product maturity to become realistically competitive.
Rocznik
Tom
Strony
901--905
Opis fizyczny
Bibliogr. 21 poz., wz., tab., wykr.
Twórcy
autor
- Institute of Management, University of Szczecin ul. Cukrowa 8, 71-004 Szczecin, Poland
autor
- Institute of Management, University of Szczecin ul. Cukrowa 8, 71-004 Szczecin, Poland
- National Institute of Telecommunications ul. Szachowa 1, 04-894 Warsaw, Poland
Bibliografia
- 1. M. Tutak and J. Brodny, “Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective,” Journal of Cleaner Production, vol. 345, p. 131076, 2022. http://dx.doi.org/https://doi.org/10.1016/j.jclepro.2022.131076
- 2. A. Wyrwa, W. Suwała, M. Pluta, M. Raczyński, J. Zyśk, and S. Tokarski, “A new approach for coupling the short-and long-term planning models to design a pathway to carbon neutrality in a coal-based power system,” Energy, vol. 239, p. 122438, 2022. http://dx.doi.org/https://doi.org/10.1016/j.energy.2021.122438
- 3. M. Amin, H. H. Shah, A. G. Fareed, W. U. Khan, E. Chung, A. Zia, Z. U. R. Farooqi, and C. Lee, “Hydrogen production through renewable and non-renewable energy processes and their impact on climate change,” International journal of hydrogen energy, vol. 47, no. 77, pp. 33 112–33 134, 2022. http://dx.doi.org/https://doi.org/10.1016/j.ijhydene.2022.07.172
- 4. H. Kryszk, K. Kurowska, R. Marks-Bielska, S. Bielski, and B. Eźlakowski, “Barriers and Prospects for the Development of Renewable Energy Sources in Poland during the Energy Crisis,” Energies, vol. 16, no. 4, p. 1724, 2023. http://dx.doi.org/https://doi.org/10.3390/en16041724
- 5. M. Deveci, D. Pamucar, and E. Oguz, “Floating photovoltaic site selection using fuzzy rough numbers based LAAW and RAFSI model,” Applied Energy, vol. 324, p. 119597, 2022. http://dx.doi.org/https://doi.org/10.1016/j.apenergy.2022.119597
- 6. R. Cazzaniga and M. Rosa-Clot, “The booming of floating PV,” Solar Energy, vol. 219, pp. 3–10, 2021. doi: https://doi.org/10.1016/j.solener.2020.09.057
- 7. M. Kumar, H. M. Niyaz, and R. Gupta, “Challenges and opportunities towards the development of floating photovoltaic systems,” Solar Energy Materials and Solar Cells, vol. 233, p. 111408, 2021. doi: https://doi.org/10.1016/j.solmat.2021.111408
- 8. T. T. E. Vo, H. Ko, J. Huh, and N. Park, “Overview of possibilities of solar floating photovoltaic systems in the offshore industry,” Energies, vol. 14, no. 21, p. 6988, 2021. http://dx.doi.org/https://doi.org/10.3390/en14216988
- 9. S. R. K. Soltani, A. Mostafaeipour, K. Almutairi, S. J. H. Dehshiri, S. S. H. Dehshiri, and K. Techato, “Predicting effect of floating photovoltaic power plant on water loss through surface evaporation for wastewater pond using artificial intelligence: A case study,” Sustainable Energy Technologies and Assessments, vol. 50, p. 101849, 2022. http://dx.doi.org/https://doi.org/10.1016/j.seta.2021.101849
- 10. A. Boduch, K. Mik, R. Castro, and P. Zawadzki, “Technical and economic assessment of a 1 mwp floating photovoltaic system in Polish conditions,” Renewable Energy, vol. 196, pp. 983–994, 2022. doi: https://doi.org/10.1016/j.renene.2022.07.032
- 11. Q. Cao, M. O. Esangbedo, S. Bai, and C. O. Esangbedo, “Grey SWARA-FUCOM weighting method for contractor selection MCDM problem: A case study of floating solar panel energy system installation,” Energies, vol. 12, no. 13, p. 2481, 2019. http://dx.doi.org/https://doi.org/10.3390/en12132481
- 12. J. Wątróbski, A. Bączkiewicz, and I. Rudawska, “SSP COPRAS Based Approach Towards Sustainability Assessment in Healthcare,” in AMCIS 2022 Proceedings. AMCIS 2022, 2022, pp. 1–10.
- 13. I. M. Hezam, A. R. Mishra, P. Rani, A. Saha, F. Smarandache, and D. Pamucar, “An integrated decision support framework using single-valued neutrosophic-MASWIP-COPRAS for sustainability assessment of bioenergy production technologies,” Expert Systems with Applications, vol. 211, p. 118674, 2023. http://dx.doi.org/https://doi.org/10.1016/j.eswa.2022.118674
- 14. I. M. Hezam, A. R. Mishra, R. Krishankumar, K. Ravichandran, S. Kar, and D. S. Pamucar, “A single-valued neutrosophic decision framework for the assessment of sustainable transport investment projects based on discrimination measure,” Management Decision, vol. 61, no. 2, pp. 443–471, 2023. http://dx.doi.org/https://doi.org/10.1108/MD-11-2021-1520
- 15. F. Guo, J. Gao, H. Liu, and P. He, “Locations appraisal framework for floating photovoltaic power plants based on relative-entropy measure and improved hesitant fuzzy linguistic DEMATEL-PROMETHEE method,” Ocean & Coastal Management, vol. 215, p. 105948, 2021. http://dx.doi.org/https://doi.org/10.1016/j.ocecoaman.2021.105948
- 16. S. Di Grazia and G. M. Tina, “Optimal site selection for floating photovoltaic systems based on Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): a case study,” International Journal of Sustainable Energy, pp. 1–23, 2023. http://dx.doi.org/https://doi.org/10.1080/14786451.2023.2167999
- 17. J. L. Schaefer, J. C. M. Siluk, and P. S. de Carvalho, “An MCDM-based approach to evaluate the performance objectives for strategic management and development of Energy Cloud,” Journal of Cleaner Production, vol. 320, p. 128853, 2021. http://dx.doi.org/https://doi.org/10.1016/j.jclepro.2021.128853
- 18. A. Bączkiewicz, J. Wątróbski, B. Kizielewicz, and W. Sałabun, “Towards objectification of multi-criteria assessments: a comparative study on MCDA methods,” in 2021 16th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2021. doi: https://doi.org/10.15439/2021F61 pp. 417–425.
- 19. J. Wątróbski and A. Bączkiewicz, “Towards Sustainable Transport Assessment Considering Alternative Fuels Based on MCDA Methods,” in 2022 17th Conference on Computer Science and Intelligence Systems (FedCSIS). IEEE, 2022. http://dx.doi.org/https://doi.org/10.15439/2022F144 pp. 799–808.
- 20. J. Wątróbski, A. Bączkiewicz, and I. Rudawska, “A Strong Sustainability Paradigm based Analytical Hierarchy Process (SSP-AHP) method to evaluate sustainable healthcare systems,” Ecological Indicators, vol. 154, p. 110493, 2023. http://dx.doi.org/https://doi.org/10.1016/j.ecolind.2023.110493
- 21. J. Wątróbski, A. Karczmarczyk, and A. Bączkiewicz, “Using the TOSS method in semi-autonomous passenger car selection,” Sustainable Energy Technologies and Assessments, vol. 58, p. 103367, 2023. http://dx.doi.org/https://doi.org/10.1016/j.seta.2023.103367
Uwagi
1. Publication funded by the state budget under the program of the Minister of Education and Science named Perły Nauki, Poland, project number: PN/01/0022/2022, total project value: PLN 165 000,00.
2. Thematic Tracks Short Papers
3. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-4213d8c4-7920-4915-847a-0213f28fe9ba