PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on tool wear based on multi-scale simulation in high speed cutting Inconel 718

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nickel-based superalloy Inconel718 has excellent properties such as good fatigue resistance, creep resistance, oxidation resistance and corrosion resistance. It has been widely used in aerospace industry. However, nickel-based superalloy is a kind of typical difficult-to process-material. The alloying elements which enhanced material exist in the form of high hardness compound (TiC, NbC and other interphase hard point). These high hardness compounds led to complicate cutting deformation, high cutting temperature, large cutting force and severe tool wear. According to the characteristics in cutting Inconel718 and the microstructure of cemented carbide tool, the wear properties and mechanism of carbide tool in cutting Inconel718 process are revealed by multi-scale analysis method. The main wear forms that wear debris peeled from the tool substrate are given and the evolution mechanism of tool wear caused by the crack in the cutting process is deeply studied.
Rocznik
Strony
928--940
Opis fizyczny
Bibliogr. 22 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
autor
  • School of Mechatronic Engineering, ChangChun University of Technology, ChangChun 130012, China
Bibliografia
  • [1] S. Ranganath, C. Guo, S. Holt, Experimental investigation into the carbide cracking phenomenon on Inconel718 superalloy material, in: Proceedings of the ASME – International Manufacturing Science & Engineering, 2009.
  • [2] T. Özel, Y. Karpat, Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks, Int. J. Mach. Tools Manuf. 45 (2005) 467–479.
  • [3] J. Díaz-Álvarez, J.L. Cantero, H. Miguélez, X. Soldani, Numerical analysis of thermomechanical phenomena influencing tool wear in finishing turning of Inconel 718, Int. J. Mech. Sci. 82 (2014) 161–169.
  • [4] A. Attanasio, E. Ceretti, S. Rizzuti, D. Umbrello, F. Micari, 3D finite element analysis of tool wear in machining, CIRP Ann. Manuf. Technol. 57 (2008) 61–64.
  • [5] Y.C. Yen, Modeling of Metal Cutting and Ball Burnishing: Prediction of Tool Wear and Surface Properties, Ohio State University, 2004.
  • [6] L.J. Xie, Estimation of Two-Dimension Tool Wear Based on Finite Element Method, University of Karlsruhe, 2004.
  • [7] M. Binder, F. Klocke, B. Doebbeler, An advanced numerical approach on tool wear simulation for tool and process design in metal cutting, Simul. Model. Pract. Theory 70 (2017) 65–82.
  • [8] Y.C. Yen, J. Sohner, B. Lilly, et al., Estimation of tool wear in orthogonal cutting using the finite element analysis, Mater. Process. Technol. 146 (2004) 82–91.
  • [9] S.J. Yan, D.H. Zhu, K.J. Zhuang, X.M. Zhang, H. Ding, Modeling and analysis of coated tool temperature variation in dry milling of Inconel 718 turbine blade considering flank wear effect, J. Mater. Process. Technol. 124 (2014) 2985–3001.
  • [10] L. Filice, D. Umbrello, F. Micari, FE analysis of tool wear in orthogonal cutting, in: Proceedings of the Second International Conference on Tribology in Manufacturing Processes, Nyborg, 2004, 187–194.
  • [11] R.T. Peng, J. Li, X.Z. Tang, Z. Zhou, Simulation of tool wear in prestressed cutting superalloys, Mater. Sci. Forum 10 (2016) 42–45.
  • [12] X. Dong, C. Liao, Y.C. Shin, Machinability improvement of gear hobbing via process simulation and tool wear predictions, Int. J. Adv. Manuf. Technol. 9 (2016) 2771–2779.
  • [13] K. Cheng, X. Luo, R. Ward, R. Holt, Modeling and simulation of the tool wear in nanometric cutting, Wear 7 (2003) 1427–1432.
  • [14] K.J. Zhuang, D.H. Zhu, X.M. Zhang, H. Ding, Notch wear prediction model in turning of Inconel 718 with ceramic tools considering the influence of work hardened layer, Wear 313 (2014) 63–74.
  • [15] J. Kümmel, K. Poser, F. Zanger, J. Michna, V. Schulze, M. Hua, Surface layer states of worn uncoated and TiN-coated WC/ Co-cemented carbide cutting tools after dry plain turning of carbon steel, Adv. Tribol. 7 (2013) 427–432.
  • [16] J.W. Yu, M. Cheng, S.H. Yin, G.Z. Xie, X.L. Zhou, A study of machining characteristics of YG8 in high speed grinding, Key Eng. Mater. 3 (2011) 108–112.
  • [17] A.N. Stroh, The formation of cracks as a result of plastic flow, Proc. R. Soc. A 223 (1954) 404–414.
  • [18] N.P. Suh, The delamination theory of wear, Wear 26 (1973) 111–124.
  • [19] H. Attia, S. Tavakoli, R. Vargas, V. Thomson, Laser-assisted high-speed finish turning of superalloy Inconel718, CIRP Ann. Manuf. Technol. 59 (2010) 83–88.
  • [20] H. Lim, M.G. Lee, J.H. Kim, B.L. Adams, R.H. Wagoner, Simulation of polycrystal deformation with grain and grain boundary effects, Int. J. Plast. 27 (2011) 1328–1354.
  • [21] M.C. Sun, Mechanical Properties of Metal, Harbin Institute of Technology Press, 2003. p. 71 (in Chinese).
  • [22] H.C. Chen, Z.H. Yang, A model on cavity failure in metal, Metal Sci. Technol. 4 (1986) 18–24 (in Chinese).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-421289b0-0870-4b89-a2a5-dfc461b5b863
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.