PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

New Approaches to Generalized Logistic Equation with Bifurcation Graph Generation Tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper propose two new generalizations of the logistic function, each drawing on non-extensive thermodynamics, the q-logistic equation and the logistic equation of arbitrary order respectively. It demonstrate the impact of chaos theory by integrating it with logistics equations and reveal how minor parameter variations will change system behavior from deterministic to non-deterministic behavior. As well, this work presents BifDraw – a Python program for making bifurcation diagrams using classical logistic function and its generalizations illustrating the diversity of the system's response to the changes in the conditions. The research gives a pivotal role to the logistic equation's place in chaos theory by looking at its complicated dynamics and offering new generalizations that may be new in terms of thermodynamic basic states and entropy. Also, the paper investigates dynamics nature of the equations and bifurcation diagrams in it which present complexity and the surprising dynamic systems features. The development of the BifDraw tool exemplifies the practical application of theoretical concepts, facilitating further exploration and understanding of logistic equations within chaos theory. This study not only deepens our comprehension of logistic equations and chaos theory but also introduces practical tools for visualizing and analyzing their behaviors.
Twórcy
  • Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów
  • Department of Complex Systems, The Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, ul. MC Skłodowskiej 8, 35-036 Rzeszów
Bibliografia
  • 1. Eoyang, E. Chaos Misread: Or, There’s Wonton in My Soup! Comparative Literature Studies, 1989, 271–284.
  • 2. Lee, A.C. The Chinese Creation Myth of Nu Kua and the Biblical Narrative in Genesis 1–11. Biblical interpretation, 1994, 2(3), 312–324.
  • 3. Höfele, A., Levin, C., Müller, R., Quiring, B. (Eds.). Chaos from the Ancient world to Early modernity: formations of the formless. Walter de Gruyter GmbH & Co KG. 2020.
  • 4. Gunkel, H. Creation and chaos in the primeval era and the eschaton: A religio-historical study of Genesis 1 and Revelation 12. Wm. B. Eerdmans Publishing. 2006.
  • 5. Roest, B. Order and disorder: the Poor Clares between foundation and reform, 2013, 8. Brill.
  • 6. Prigogine, I., Stengers, I. The end of certainty. Simon and Schuster. 1997.
  • 7. Smith, C. W. Empiricist devotions: Science, religion, and poetry in early eighteenth-century England. University of Virginia Press. 2016.
  • 8. Hacking, I. Nineteenth century cracks in the concept of determinism. Journal of the History of Ideas, 1983, 44(3), 455–475.
  • 9. Poincaré, H. Analysis situs, 1895, 1–121. Paris, France: Gauthier-Villars.
  • 10. Tucker, W. The Lorenz attractor exists. Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 1999, 328(12), 1197–202.
  • 11. Dove, W.F. A Long Walk with René: Order out of Chaos via Avenue Lambda. VIROLOGY, 1964, 24, 241–253.
  • 12. Schuster, H.G., Just, W. Deterministic chaos: an introduction. John Wiley & Sons. 2006.
  • 13. Cilliers, P. Complexity and postmodernism: Understanding complex systems. routledge. 2002.
  • 14. Mann, S.R. Chaos theory and strategic thought. Parameters, 1992, 22(3), 54–68.
  • 15. Kumar, A. Chaos theory: impact on and applications in medicine. Journal of Health and Allied Sciences NU, 2012, 2(04), 93–99.
  • 16. May, R.M. Stability and complexity in model ecosystems (Vol. 1). Princeton university press. 2019.
  • 17. Fox, J. And the most-cited ecology papers from the 70s, 80s, and 90s are... (UPDATEDx6). Dynamic Ecology. 2013, June 15. https://dynamicecology.wordpress.com/ 2013/06/10/and-the-most-cited-ecology-papers-from-the-70s-80s-and-90s-are/
  • 18. Malthus, T.R. An essay on the principle of population (1798). The Works of Thomas Robert Malthus, London, Pickering & Chatto Publishers, 1986, 1, 1–139.
  • 19. Verhulst, P.F. Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique, 1838, 10, 113–129.
  • 20. Strzałka, D., Grabowski, F. Towards possible q-generalizations of the Malthus and Verhulst growth models. Physica A: Statistical Mechanics and its Applications, 2008, 387(11), 2511–2518.
  • 21. Grabowski, F. Logistic Equation of arbitrary order. Physica A: Statistical Mechanics and its Applications, 2010, 389(16), 3081–3093.
  • 22. Clausius, R. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Annalen der Physik, 1850, 155(3), 368–397.
  • 23. Tsallis, C. Possible generalization of Boltzmann-Gibbs statistics. Journal of statistical physics, 1988, 52, 479–487.
  • 24. Yamano, T. Some properties of q-logarithm and q-exponential functions in Tsallis statistics. Physica A: Statistical Mechanics and its Applications, 2002, 305(3–4), 486–496.
  • 25. Tsallis, C. What should a statistical mechanics satisfy to reflect nature?. Physica D: Nonlinear Phenomena, 2004, 193(1–4), 3–34.
  • 26. Ashby, W.R. Principles of the self-organizing dynamic system. The Journal of general psychology, 1947, 37(2), 125–128.
  • 27. Prehofer, C., Bettstetter, C. Self-organization in communication networks: principles and design paradigms. IEEE Communications magazine, 2005, 43(7), 78–85.
  • 28. Dressler, F. A study of self-organization mechanisms in ad hoc and sensor networks. Computer Communications, 2008, 31(13), 3018–3029.
  • 29. Hinchey, M.G., Sterritt, R. Self-managing software. Computer, 2006, 39(2), 107–109.
  • 30. Mamei, M., Menezes, R., Tolksdorf, R., Zambonelli, F. Case studies for self-organization in computer science. Journal of Systems Architecture, 2006, 52(8–9), 443–460.
  • 31. Mills, K.L. A brief survey of self‐organization in wireless sensor networks. Wireless Communications and Mobile Computing, 2007, 7(7), 823–834.
  • 32. Bantz, D.F., Bisdikian, C., Challener, D., Karidis, J.P., Mastrianni, S., Mohindra, A., Shea D.G., Vanover, M. Autonomic personal computing. IBM Systems Journal, 2003, 42(1), 165–176.
  • 33. Alencar, A.M., Andrade, J.S., Lucena, L.S. Selforganized percolation. Physical Review E, 1997, 56(3), R2379.
  • 34. Bak, P., Tang, C., Wiesenfeld, K. Self-organized criticality: An explanation of the 1/f noise. Physical review letters, 1987, 59(4), 381.
  • 35. Bak, P., Tang, C., Wiesenfeld, K. Self-organized criticality. Physical review A, 1988, 38(1), 364.
  • 36. Bak, P. How nature works: the science of selforganized criticality. Springer Science & Business Media. 2013.
  • 37. Abe, S., Suzuki, N. Statistical similarities between internetquakes and earthquakes. Physica D: Nonlinear Phenomena, 2004, 193(1–4), 310–314.
  • 38. Polyakov, A.A. Process of self-organization in metal. Materials Science, 1993, 29(2), 121–127.
  • 39. Abe, S., Suzuki, N. Omori’s law in the Internet traffic. Europhysics Letters, 2003, 61(6), 852.
  • 40. Jørgensen, S.E., Mejer, H., Nielsen, S.N. Ecosystem as self-organizing critical systems. Ecological Modelling, 1998, 111(2–3), 261–268.
  • 41. Scheinkman, J.A., Woodford, M. Self-organized criticality and economic fluctuations. The American Economic Review, 1994, 84(2), 417–421.
  • 42. Guerin, S., Kunkle, D. Emergence of constraint in self-organizing systems. Nonlinear Dynamics, Psychology, and Life Sciences, 2004, 8(2), 131–146.
  • 43. Turcotte, D.L., Malamud, B.D., Guzzetti, F., Reichenbach, P. Self-organization, the cascade model, and natural hazards. Proceedings of the National Academy of Sciences, 99(1), 2002, 2530–2537.
  • 44. Grabowski, F. Difference between the 1/f noise spectral density before and after stress as a measure of the submicron MOS transistors degradation. Microelectronics Reliability, 1995, 35(3), 511–528.
  • 45. Sornette, D. Predictability of catastrophic events: Material rupture, earthquakes, turbulence, financial crashes, and human birth. Proceedings of the National Academy of Sciences, 2002, 99(1), 2522–2529.
  • 46. Prigogine, I., Nicolis, G. Self-organization. Non-Equilibrium System. 1977.
  • 47. Heylighen, F. The science of self-organization and adaptivity. The encyclopedia of life support systems, 2001, 5(3), 253–280.
  • 48. Haken, H. Self-organization. Scholarpedia, 2008, 3(8), 1401.
  • 49. Richerson, P.J., Boyd, R. Homage to Malthus, Ricardo, and Boserup: Toward a general theory of population, economic growth, environmental deterioration, wealth, and poverty. Human Ecology Review, 1997, 85–90.
  • 50. Nelder, J.A. 182. note: An alternative form of a generalized logistic Equation. Biometrics, 1962, 18(4), 614–616.
  • 51. Rosen, G. Characterizing conditions for generalized Verhulst logistic growth of a biological population. Bulletin of mathematical biology, 1984, 46, 963–965.
  • 52. Gabriel, J.P., Saucy, F., Bersier, L.F. Paradoxes in the logistic Equation?. Ecological Modelling, 2005, 185(1), 147–151.
  • 53. El-Sayed, A.M.A., El-Mesiry, A.E.M., El-Saka, H.A.A. On the fractional-order logistic Equation. Applied Mathematics Letters, 2007, 20(7), 817–823.
  • 54. Funkhouser, H.G. A short account of the history of symmetric functions of roots of Equations. The American mathematical monthly, 1930, 37(7), 357–365.
  • 55. Lee, W.K., Phan, R.C. W., Yap, W.S., Goi, B.M. Spring: a novel parallel chaos-based image encryption scheme. Nonlinear Dynamics, 2018, 92(2), 575–593.
  • 56. Han, Z., Feng, W.X., Hui, L.Z., Da Hai, L., Chou, L.Y. A new image encryption algorithm based on chaos system. In IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, 2003. Proceedings. 2003, 2, 778–782.
  • 57. Crane, J. Chaos Theory and Military Applications. 2007.
  • 58. github.com/zszprz/bifdraw
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-420de1cf-d06a-457b-895c-6c0bf4b13b43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.