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INTRODUCTION

The concept of chaos has been recognized 
since ancient times. Ancient civilizations, such 
as the Babylonians [1], Chinese [2], Greeks [3], 
and Jewish [4] tribes, shared a common vision 
of the world’s genesis – chaos transforming into 
order. Historically, order was associated with 
good, while disorder was seen as evil [5]. By 
the 18th century, significant strides in uncover-
ing nature’s laws led to a belief that almost ev-
erything about the universe was understood [6]. 
This era, influenced by Newton’s laws, viewed 
the world as a clockwork mechanism [7].

However, the 19th century brought chal-
lenges to this deterministic view [8]. Henri 
Poincaré, while studying the stability of plan-
etary motion in the Solar System, discovered 
signs of chaos [9]. Nearly a century after 

Poincaré, a work by Edward Lorenz laid the 
foundation for chaos theory [10]. Although the 
concept of deterministic chaos emerged in the 
1960s [11], it was not until the proliferation of 
computers and their computational power that 
the theory gained widespread acceptance and 
interest [12]. This theory offers a novel and ef-
fective approach to scientifically describe com-
plex physical and social systems that were pre-
viously deemed too intricate [13]. Almost all 
empirical sciences, from astronomy to sociol-
ogy, have encountered chaos theory [14].

A notable example of understanding chaos 
is the analysis of the logistic Equation and its 
representation using a bifurcation diagram. 
This simple Equation exhibits remarkable 
properties, where minor parameter changes can 
shift its behavior from deterministic to random. 
The primary objective of this publication was 
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to present the concept of the logistic Equation, 
its significance in chaos theory, and propose 
two potential generalizations, including one 
based on non-extensive thermodynamics. Fur-
thermore, an application that generates bifurca-
tion diagrams was introduced.

Over many years, a lot of papers and books 
have been published and interesting visual-
izations have been done in the area of logistic 
Equation. Its simplicity is a confirmation that 
in many cases simple systems can lead to very 
complex behaviors. Also, it has been proven that 
many systems can behave similarly to logistic 
Equation, especially creating different bifurca-
tion diagrams. In this paper, two new proposals 
are presented, but this time they refer to non-
extensive entropy and the concept of fractional 
generalizations. To the best knowledge of au-
thors, such approaches have not been done so 
far and it is believed that can expand the point of 
logistic Equation perception. 

LOGISTIC EQUATION

The logistic Equation is often associated 
with deterministic chaos due to its significant 
intersection with experimental chaos theory 
[15]. This chapter will cover the origins of the 
logistic Equation, its role in chaos theory, and 
two generalization ideas. The concept of bifur-
cation and a sample bifurcation plot of the lo-
gistic mapping will be discussed.

Origin of the logistic Equation

In the 1970s, Australian scholar Robert May, 
working at the University of Oxford, published 
a breakthrough paper [16]. Although not initially 
about chaos theory, the analysis of the logistic 
Equation made it one of the most cited texts in 
theoretical ecology [17]. May’s work focused 
on the theoretical aspects of population dynam-
ics. The simplest mathematical model for such 
ecosystems, where the lifespan of one genera-
tion lasts one season, is the linear model, often 
referred to as the Malthus [18] model:

  (1)

When analyzing Equation (1), three popula-
tion development scenarios are possible. In na-
ture, however, unlimited growth never occurs 

due to environmental constraints [8]. The Equa-
tion had to be adjusted to account for resource 
limits. Belgian mathematician Pierre François 
Verhulst proposed a model in 1838 [19] that 
considered food access limitations:

 

𝑁𝑁𝑖𝑖+1 = 𝛼𝛼𝑁𝑁𝑖𝑖 (1) 
 

𝛼𝛼 = 𝛼𝛼(𝑁𝑁𝑖𝑖) (2) 
 

𝛼𝛼 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖
𝐾𝐾 ) (3) 

 
𝑁𝑁𝑖𝑖+1 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖

𝐾𝐾 ) 𝑁𝑁𝑖𝑖 (4) 
 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖) (5) 
 

𝑆𝑆𝑞𝑞 = 1−∑ 𝑝𝑝𝑖𝑖
𝑞𝑞

𝑖𝑖
𝑞𝑞−1  (6) 
 

𝑤𝑤 = 𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖

 (7) 
 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑋𝑋𝑖𝑖 = (1 + 𝑤𝑤)𝑋𝑋𝑖𝑖. (8) 
 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖 (9) 
 

𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖 = 𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖 (10) 
 

 (2)

 

𝑁𝑁𝑖𝑖+1 = 𝛼𝛼𝑁𝑁𝑖𝑖 (1) 
 

𝛼𝛼 = 𝛼𝛼(𝑁𝑁𝑖𝑖) (2) 
 

𝛼𝛼 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖
𝐾𝐾 ) (3) 

 
𝑁𝑁𝑖𝑖+1 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖

𝐾𝐾 ) 𝑁𝑁𝑖𝑖 (4) 
 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖) (5) 
 

𝑆𝑆𝑞𝑞 = 1−∑ 𝑝𝑝𝑖𝑖
𝑞𝑞

𝑖𝑖
𝑞𝑞−1  (6) 
 

𝑤𝑤 = 𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖

 (7) 
 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑋𝑋𝑖𝑖 = (1 + 𝑤𝑤)𝑋𝑋𝑖𝑖. (8) 
 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖 (9) 
 

𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖 = 𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖 (10) 
 

 (3)

where: K stands for the amount of available re-
sources or habitat capacity limit. 

Combining models (1) and (3) results in:

 

𝑁𝑁𝑖𝑖+1 = 𝛼𝛼𝑁𝑁𝑖𝑖 (1) 
 

𝛼𝛼 = 𝛼𝛼(𝑁𝑁𝑖𝑖) (2) 
 

𝛼𝛼 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖
𝐾𝐾 ) (3) 

 
𝑁𝑁𝑖𝑖+1 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖

𝐾𝐾 ) 𝑁𝑁𝑖𝑖 (4) 
 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖) (5) 
 

𝑆𝑆𝑞𝑞 = 1−∑ 𝑝𝑝𝑖𝑖
𝑞𝑞

𝑖𝑖
𝑞𝑞−1  (6) 
 

𝑤𝑤 = 𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖

 (7) 
 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑋𝑋𝑖𝑖 = (1 + 𝑤𝑤)𝑋𝑋𝑖𝑖. (8) 
 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖 (9) 
 

𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖 = 𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖 (10) 
 

 (4)

This can be further transformed into the logis-
tic Equation:

 

𝑁𝑁𝑖𝑖+1 = 𝛼𝛼𝑁𝑁𝑖𝑖 (1) 
 

𝛼𝛼 = 𝛼𝛼(𝑁𝑁𝑖𝑖) (2) 
 

𝛼𝛼 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖
𝐾𝐾 ) (3) 

 
𝑁𝑁𝑖𝑖+1 = 𝛼𝛼 (1 − 𝑁𝑁𝑖𝑖

𝐾𝐾 ) 𝑁𝑁𝑖𝑖 (4) 
 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖) (5) 
 

𝑆𝑆𝑞𝑞 = 1−∑ 𝑝𝑝𝑖𝑖
𝑞𝑞

𝑖𝑖
𝑞𝑞−1  (6) 
 

𝑤𝑤 = 𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖

 (7) 
 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑋𝑋𝑖𝑖 = (1 + 𝑤𝑤)𝑋𝑋𝑖𝑖. (8) 
 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖 (9) 
 

𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖 = 𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖 (10) 
 

 (5)

Despite its simplicity, May [16] demonstrated 
that the Equation (5) has complex dynamics.

The logistic Equation in chaos theory

At first glance, the logistic Equation seems 
simple and predictable. However, for certain 
values of 𝛼, the model exhibits periodic and 
even chaotic seasonal population changes, 
highly sensitive to initial values 𝑥0. For in-
stance, with 𝛼 = 4, the behavior of the logistic 
Equation 5 appears random and is extremely 
sensitive to initial conditions, as illustrated in 
Figures 1, 2, 3 and 4 which show changes in 
linear plots. The logistic Equation showcases 
unique mathematical properties typical of de-
terministic chaos. By slightly modifying the 𝛼 
parameter, the nature of the Equation changes 
from deterministic to random, highly sensitive 
to initial conditions. This is why May’s paper 
[16] gained popularity. The presented form of 
the logistic Equation (5) is its most known, but 
it can undergo certain modifications.

GENERALIZATION OF THE LOGISTIC 
EQUATION

Various approaches exist to generalize the 
logistic mapping. This chapter presents two such 
ideas. The first is based on the generalized q-lo-
gistic Equation proposed in [20], and the second 
is based on the logistic model of any order pre-
sented in [21].
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Figure 1. Graph of the value of the logistic equation for x0 = 0.4 and α = 0.5

Figure 2. Graph of logistic equation values for x0 = 0.4 and α = 1.2

Figure 3. Graph of the value of the logistic equation for x0 = 0.4 and α = 3.2

Figure 4. Graph of the value of the logistic equation for two starting values x0 = 0.4 and x0 = 0.400001 with 
dynamics α = 4
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Generalized q-logistic Equation 

A crucial concept related to chaos theory is entropy, a fundamental thermodynamics concept. It 
quantitatively characterizes the irreversibility of physical and chemical processes. Rudolf Clausius, a 
German physicist, laid the foundation for entropy theory in 1850 with his statement: "It is impossible 
to transfer heat from a body at a lower temperature to one at a higher temperature without introducing 
other changes in both bodies and their surroundings" [22]. This discovery quickly gained popularity in 
the scientific world. 

In systems far from equilibrium, classical (extensive) thermodynamics can fail. Constantino Tsallis 
proposed an extension in 1988, based on Equation (6), which was presented as a way to construct 
generalized thermodynamic foundations of statistical physics [23]. 

𝑆𝑆𝑞𝑞 = 1−∑ 𝑝𝑝𝑖𝑖
𝑞𝑞

𝑖𝑖
𝑞𝑞−1                                                                          (6) 

In the simplest population model, the growth rate 𝑤𝑤 of any organism population 𝑋𝑋 is somewhat 
dependent on 𝑋𝑋 itself. Given that 𝑋𝑋𝑖𝑖 is the current population size at time i = 1, 2, 3,… and ignoring 
migration effects, 𝑤𝑤 is: 

𝑤𝑤 = 𝑋𝑋𝑖𝑖+1−𝑋𝑋𝑖𝑖
𝑋𝑋𝑖𝑖

                                                                         (7) 

where: 𝑤𝑤 can also be treated as the difference between birth rate 𝑏𝑏 and mortality rate 𝑑𝑑. Assuming 𝑤𝑤 = 
const. and transforming formula (7), we get: 

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑤𝑤𝑋𝑋𝑖𝑖 = (1 + 𝑤𝑤)𝑋𝑋𝑖𝑖.                                                         (8) 

From this, it is easy to infer that with 𝑤𝑤 > 0, the population size 𝑋𝑋 will tend towards infinity over 
time. Further transforming Equation (8) gives: 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖                                                                    (9) 

Considering the Verhulst model, there is an expected maximum population size 𝑁𝑁 that a given 
habitat can accommodate. If the population size at a given time 𝑋𝑋𝑖𝑖 is less than 𝑁𝑁, further growth is 
expected. However, if 𝑋𝑋𝑖𝑖 > 𝑁𝑁, the population should decrease. This leads to the Equation: 

𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖 = 𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖                                                               (10) 
Transformation of formula (10) gives: 

𝑋𝑋𝑖𝑖 = 𝑏𝑏0−𝑑𝑑0
𝑘𝑘𝑏𝑏+𝑘𝑘𝑑𝑑

                                                                            (11) 

Further transformations yield: 

𝑋𝑋𝑖𝑖+1 − 𝑋𝑋𝑖𝑖 = 𝑤𝑤𝑋𝑋𝑖𝑖 = [(𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑋𝑋𝑖𝑖) − (𝑑𝑑0 + 𝑘𝑘𝑑𝑑𝑋𝑋𝑖𝑖)]𝑋𝑋𝑖𝑖 = [𝑏𝑏0 − 𝑑𝑑0 − (𝑘𝑘𝑏𝑏 + 𝑘𝑘𝑑𝑑)𝑋𝑋𝑖𝑖] = (𝑤𝑤 − 𝑤𝑤𝑋𝑋𝑖𝑖
𝑁𝑁 ) 𝑋𝑋𝑖𝑖 =

 = 𝑤𝑤𝑋𝑋𝑖𝑖 (1 − 𝑋𝑋𝑖𝑖
𝑁𝑁 )                                                                (12) 

Assuming 𝑋𝑋𝑖𝑖/𝑁𝑁 = 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑖𝑖 ∈ 〈0, 1〉, Equation (12) becomes: 
𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖 = 𝑤𝑤𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)                                                                (13) 

To obtain the continuous form of the logistic Equation, let us transform formula (13) to: 
𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑𝑡𝑡 = 𝑤𝑤𝑥𝑥(𝑡𝑡)[1 − 𝑥𝑥(𝑡𝑡)]                                                                  (14) 

Solving formula (14) gives: 

𝑥𝑥(𝑡𝑡) = 1
1+( 1

𝑥𝑥(0)−1)𝑒𝑒−𝑤𝑤𝑤𝑤                                                                     (15) 

There's also a simplified version: 
𝑥𝑥(𝑡𝑡) = 1

1+𝑒𝑒−𝑤𝑤𝑤𝑤                                                                       (16) 

Considering Tsallis's definition of the q-exponential function [24], Equation (16) can be 
generalized. Replacing the exponential function with the q-exponential function gives: 

𝑥𝑥(𝑞𝑞)(𝑡𝑡) = 1
1+𝑒𝑒𝑞𝑞

−𝑤𝑤𝑞𝑞𝑤𝑤                                                                   (17) 

Further transformations yield [20]: 
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𝑥𝑥(𝑞𝑞)𝑖𝑖+1 = 𝑤𝑤𝑞𝑞𝑥𝑥(𝑞𝑞)𝑖𝑖
𝑞𝑞 (1 − 𝑥𝑥(𝑞𝑞)𝑖𝑖)

−𝑞𝑞+2
                                                   (18) 

Figures 5 and 6 illustrate the behavior of the generalized q-logistic Equation for various values of 
𝑤𝑤. Figure 7 and 8 show the behavior for different values of 𝑞𝑞. 
In conclusion, Tsallis's q-generalization offers a new approach to well-known models like the Verhulst 
model with the logistic Equation. The generalized q-logistic Equation, despite its relative simplicity, 
can lead to interesting results. 

 
Figure 5. Generalized q-logistic equation for two example values of w 

 

 
Figure 6. Generalized q-logistic equation for two example values of w 

 
Figure 7. Generalized q-logistic equation for two example values of q 

 

Figure 8. Generalized q-logistic equation for q = 1.25 and w = 3.45 
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Generalized logistic Equation of any order 

Natural and artificial systems, such as humans, animals, plants, markets, and wireless computer 
networks, can exist in one of two distinct thermodynamic states based on internal and external 
conditions: sub-extensive or super-extensive [25]. The former represents reversible self-organization 
[26–32]. However, when such a system reaches a certain percolation threshold [33], it inevitably tends 
towards irreversible super-extensive self-organization [34–45]. 

Self-organization is defined as a system that initially consists of independent parts that, due to 
various processes, become a unified whole based on different types of connections [46–48]. 
Physical phenomena of self-organization in different systems are tied to a specific temporal-spatial 
context. Space is associated with system resources, ideally unlimited but limited in reality. Time is 
related to the processes occurring within the system. In an ideal scenario, these processes are 
homogeneous and stable, without self-organizing effects. However, in reality, processes are often 
heterogeneous and unstable, depending on the sensitivity to the initial conditions of the processes in 
the system [21]. 

When analyzing the given context, the Malthusian Equation refers to a simple system with 
unlimited resources and homogeneous processes, which is far from reality. The logistic Equation is 
slightly better, considering limited resources but still referring to homogeneous representatives of a 
species [18]. However, in reality, representatives of a species can differ to some extent. There is a lack 
of a general Equation of any order that would describe a system with limited resources governed by 
heterogeneous self-organizing processes. A solution to this problem has been proposed as a 
generalization of the logistic Equation formula with limited external system resources and internal 
heterogeneous processes. 

The logistic Equation was created in response to the imperfections of the Malthus model, based on 
Verhulst's concept formula (4). Considering Equation (4), the logistic Equation refers only to 
homogeneous and sub-extensive processes in the system. However, in reality, every system can have 
both sub-extensive and super-extensive features with homogeneous and heterogeneous modes of self-
organization. The traditional logistic Equation shows only one path, from a zero population state (𝑁𝑁 = 
0) to reaching the habitat capacity limit (𝑁𝑁 = 𝐾𝐾). In general, a system can follow different self-
organization paths, depending on both external (macroscopic) and internal (microscopic) conditions. 
Due to this, the logistic Equation is criticized for its lack of universality by some scientists [49–52]. 

Considering the taxonomy in the context, Equation (4), and other factors, the logistic Equation (5) 
can be transformed to match the Malthus model – formula (1): 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)0                                                           (19) 
Similarly, the same Equation can be rewritten in relation to the Verhulst model, resulting in the 

classic logistic Equation: 
𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)1                                                                   (20) 

From the context, a complex system model will be complete if the processes occurring in the 
system are of any order, meaning they can occur in both sub-extensive and super-extensive forms. A 
solution to this problem was presented as a generalized logistic Equation of any order, referring to the 
entire family of systems: 

𝑥𝑥𝑖𝑖+1 = 𝛼𝛼𝑥𝑥𝑖𝑖(1 − 𝑥𝑥𝑖𝑖)𝑓𝑓                                                          (21) 
The parameter 𝑓𝑓 in Equation (21) describes the self-organization of homogeneous and 

heterogeneous processes and refers to the local (microscopic) part of the system and can be of any 
order, where −∞ < 𝑓𝑓 < +∞. 

Comparing the generalized logistic Equation while maintaining the classic logistic mapping, a 
graph was presented in Figure 9. 

From Figure 9, the behavior of the generalized logistic Equation of any order is identical to the 
classic mapping. This state remains regardless of the value of 𝑓𝑓. In another test, the value of 𝛼𝛼 is 
increased to 1.2, as shown in Figure 10 where the behavior of the function is again similar to the 
classic Equation. However, a relationship can be observed: the function monotonicity is inversely 
proportional to the value of 𝑓𝑓. 
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However, the similarities between the Equations end here. The last meaningful result was obtained 
for 𝛼𝛼 = 1.7, as shown in Figure 11 where the behavior is atypical for the classic logistic Equation. For 
values of 𝑓𝑓 ∈ (0.3, 1), the function behaves as before. However, unusual things happen at 𝑓𝑓 ∈ 〈0.2, 0.3〉. 
 

 
 

Figure 9. Value graph of logistic equation of any order for x0 = 0.4 and α = 0.5 

 
Figure 10. Value graph of logistic equation of any order for x0 = 0.4 and α = 1.2 

 

Figure 11. Value graph of logistic equation of any order for x0 = 0.4 and α = 1.7 

BIFURACTION DIAGRAM 

As mentioned before, the classic logistic Equation has a unique property of changing its nature 
depending on the value of the parameter α. For a parameter 𝛼𝛼 < 3, the population tends towards a 
specific number. However, for a value in the range (3, 4), such as 𝛼𝛼 = 3.2, the population does not 
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reach one value but two, alternating every other season. Certain conclusions can be drawn from the 
analysis of this phenomenon. If the sequence of subsequent values xi approaches a limit, the condition 
for the limit value xg can be determined. This is the so-called fixed point condition of the function: 
𝑥𝑥𝑔𝑔 = 𝑓𝑓(𝑥𝑥𝑔𝑔). This relationship can be used to determine the fixed points of the logistic mapping 
depending on the parameter α. After appropriate calculations, two solutions emerge: 𝑥𝑥𝑔𝑔  = 0 and 𝑥𝑥𝑔𝑔  =
1 − 1

 𝛼𝛼. Figure 12 shows the graph of the fixed points of logistic mapping depending on the parameter α. 
When analyzing Figure 12, it is essential to note that while 𝑥𝑥𝑔𝑔 = 0 is a fixed point for any value of 

the parameter α, the meaningful values of the logistic Equation are in the range 𝑥𝑥𝑖𝑖 ∈ (0.1). Thus, the 
second fixed point exists for values 𝛼𝛼 ∈ (1.4). When the Equation depends on a parameter and the 
number of solutions changes with this parameter, this phenomenon is called bifurcation. A bifurcation 
point is 𝛼𝛼 = 1, where the system starts to have two solutions instead of one. Regardless of the initial 
condition, for 𝛼𝛼 < 1, the population always tends towards extinction. Such a point to which the system 
is attracted fulfills the definition of an attractor. If 𝛼𝛼 > 1, then two fixed points exist. Starting in this 
area from any starting point (except 𝑥𝑥0 = 0), the logistic Equation will always tend towards the second 
solution xg, its attractor. This means that if the solution 𝑥𝑥 = 0 is disturbed by any small number, e.g.,  
𝑥𝑥 = 0.00001, the population will inevitably start to tend towards 𝑥𝑥𝑔𝑔  = 1 − 1

 𝛼𝛼. In other words, the 
stable point at 𝛼𝛼 < 1 becomes unstable at 𝛼𝛼 > 1. 

 
Figure 12. Graph of logistic mapping fixed points depending on the parameter α 

According to the above assumptions, at 𝛼𝛼 = 3.2, a fixed point should occur for the Equation: 𝑥𝑥𝑔𝑔  =
1 − 1

 𝛼𝛼. This is indeed the case. Figure 13 shows the stability graph of the fixed points of logistic 

mapping for 𝛼𝛼 = 3.2 and the initial condition 𝑥𝑥0  = 1 − 1
 𝛼𝛼. From the analysis of Figure 13, it appears 

that for 𝑥𝑥0  = 1 − 1
 𝛼𝛼, there are stable fixed points for the logistic Equation. However, this situation 

changes even with a slight modification of the value 𝑥𝑥0. As it can be seen in Figure 13, another 
bifurcation occurs, resulting in the solution 𝑥𝑥𝑔𝑔  = 1 − 1

 𝛼𝛼 losing stability in favor of oscillations. Since 
they occur between two values, it can be assumed that at 𝛼𝛼 = 3.2, the system has a periodic point with 
a period of 2. Assuming that the population takes the same number every other season, the mapping 
𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑓𝑓(𝑥𝑥)), which advances the system by two seasons, can be considered. Fixed points for this 
Equation can be calculated similarly as before. After composition, the following polynomial is 
obtained (22): 

𝑥𝑥 = 𝛼𝛼2𝑥𝑥 − 𝛼𝛼2𝑥𝑥2  − 𝛼𝛼3𝑥𝑥2 + 2𝛼𝛼3𝑥𝑥3 − 𝛼𝛼3𝑥𝑥4                                     (22) 
After performing appropriate calculations on Equation (22), it turns out that four fixed point 

Equations can be obtained [53]: 

 𝑥𝑥 = 𝛼𝛼−√𝛼𝛼2−2𝛼𝛼−3+1
2𝛼𝛼                                                                          (23) 

𝑥𝑥 = 𝛼𝛼+√𝛼𝛼2−2𝛼𝛼−3+1
2𝛼𝛼                                                                 (24) 

𝑥𝑥 = 𝛼𝛼−1
𝛼𝛼                                                                      (25) 

𝑥𝑥 = 0                                                                      (26) 



9

Advances in Science and Technology Research Journal 2024, 18(6), 1–12

   
 

 
Figure 13. Stability graph of the fixed points of the logistic function 

Figure 14 shows the graph of fixed points (23–26) of the logistic mapping depending on the 
parameter α. When analyzing it, the emergence of another bifurcation is confirmed, this time at α = 3. 
This is consistent with the results presented in Figure 13. Such a graph as in Figure 14 is called a 
bifurcation diagram. However, it is not complete in this case. Presumably, since two bifurcations have 
appeared, there is no reason to assume that there will not be more. Further analysis, however, poses 
significant obstacles. Analytical examination of fixed points of further compositions of the mapping 
𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑓𝑓(𝑓𝑓(𝑥𝑥))) is impossible, as in the previous case, after composition, a fourth-degree 
polynomial is obtained. According to Galois' theory, analytical formulas for polynomial roots generally 
end at the fourth degree [54]. The analysis of chaotic systems seems extremely difficult. A solution to 
this problem might be the use of computer simulations. It can be assumed that the x-axis will be the 
values of the parameter α, while the y-axis – the stable fixed points of the logistic Equation. These points 
will be obtained by simulating a large number of iterations of the logistic Equation, from which several 
of the last results will be selected for each α. These values will then be plotted on the graph. In this way, 
a full-fledged, classic bifurcation diagram is obtained. Figure 15 shows such a graph. 

 
Figure 14. Graph of logistic mapping fixed points depending on the parameter α 

When analyzing Figure 15, several conclusions can be drawn, e.g., for the parameter value  
𝛼𝛼 = 3.2, there are 2 stable fixed points (every other season the population has the same number), for 
𝛼𝛼 = 3.5, there are already 4 such points, for 𝛼𝛼 = 3.56: 8 points, etc. As the parameter α increases, all 
branches of the existing cycle split. This process continues until α reaches the limit value 𝛼𝛼 =
3.5699456 [54–57]. From this moment on, the cycle has an infinite number of elements, spread along 
the entire segment [0, 1]. In other words, the population's number changes unpredictably and never 
repeats. The classic bifurcation diagram thus confirms the relationships discussed in this chapter. Figure 
16 presents a comparison of the fixed point graph (Fig. 14) and the bifurcation diagram (Fig. 15). 

Using a relatively simple algorithm, the structure of the fixed points of the logistic mapping was 
explored. Sometimes there is just one point, and sometimes there are infinitely many. The bifurcation 
diagram is one of the most impressive tools to showcase the extraordinary, chaotic nature of the 
logistic Equation. 
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Bifurcation graph generation tool

The section describes the BifDraw applica-
tion, a tool written in Python designed to gener-
ate bifurcation diagrams for the classic logistic 

Figure 15. Classic bifurcation diagram

Figure 16. Composition of bifurcation diagram and 
fixed point diagram

Figure 17. Interface of BifDraw application

Equation and its q-generalization. The applica-
tion was developed using the Microsoft Visual 
Studio Code environment and utilizes Python 
3.7. Key libraries employed include NumPy, 
Matplotlib, and TkInter. The interface of the ap-
plication is straightforward, allowing users to 
modify various parameters to influence the gen-
erated diagrams. Notably, at the time of publica-
tion, BifDraw is the only known program to the 
authors that can produce such charts. The appli-
cation’s functionality and its graphical user in-
terface are illustrated in Figure 17. The complete 
documentation and source code are available on 
GitHub at [58].

CONCLUSIONS

This research aimed to elucidate the logistic 
Equation, emphasizing its significance within 
chaos theory. Initially, the logistic Equation, de-
spite its seeming simplicity, was demonstrated 
to exhibit complex dynamics. The investigation 
uncovered two generalizations: a generalized q-
logistic Equation and a logistic Equation of ar-
bitrary order. The former ties into the concept of 
entropy and the q-exponential function, exhibit-
ing unique characteristics. The latter, represent-
ing both sub-extensive and super-extensive ther-
modynamic states, has attracted criticism due to 
its perceived lack of universality. As main paper 
results, the following can be indicated:
 • introduction of two innovative generalizations 

rooted in non-extensive thermodynamics and 
fractional generalizations, 

 • set of new bifurcation diagrams with graphical 
representation of the fixed points of logistic 
Equation as a function of the parameter α

 • a practical tool, BifDraw, developed to gener-
ate bifurcation diagrams for both the traditional 
logistic Equation and its q-generalized version. 

In conclusion, it is believed that this research 
offers a deeper understanding of the logistic Equa-
tion within chaos theory, shedding light on its 
behavior and generalizations. The development 
of BifDraw serves as a testament to the blend of 
theory and application, facilitating further explo-
ration and comprehension of the subject.
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